Math 17A Kouba The Plausibility of L'Hopital's Rule, The $\frac{0}{0}$ Case

<u>L'Hopital's Rule</u> $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ Case): If $\lim_{x \to a} f(x) = 0$, $\lim_{x \to a} g(x) = 0$, and $\lim_{x \to a} \frac{f'(x)}{g'(x)} = L$ (a finite number or $\pm \infty$), then $\lim_{x \to a} \frac{f(x)}{g(x)} = L$.

Assume that f, g, f', and g' are continuous for all x-values in an interval containing a, so that

$$\lim_{x \to a} f(x) = f(a) = 0,$$
$$\lim_{x \to a} g(x) = g(a) = 0,$$
$$\lim_{x \to a} f'(x) = f'(a)$$
and
$$\lim_{x \to a} g'(x) = g'(a).$$

Then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f(x) - f(a)}{g(x) - g(a)}$$
$$= \lim_{x \to a} \frac{\frac{f(x) - f(a)}{x - a}}{\frac{g(x) - g(a)}{x - a}}$$
$$= \frac{f'(a)}{g'(a)}$$
$$= \lim_{x \to a} \frac{f'(x)}{g'(x)} = L .$$