Chapter 1
The Theory of Weakly Coupled Oscillators

Michael A. Schwemmer and Timothy J. Lewis

Abstract This chapter focuses on the application of phase response curves (PRCs)
in predicting the phase locking behavior in networks of periodically oscillating
neurons using the theory of weakly coupled oscillators. The theory of weakly
coupled oscillators can be used to predict phase-locking in neuronal networks with
any form of coupling. As the name suggests, the coupling between cells must be
sufficiently weak for these predictions to be quantitatively accurate. This implies
that the coupling can only have small effects on neuronal dynamics over any given
cycle. However, these small effects can accumulate over many cycles and lead to
phase locking in the neuronal network. The theory of weak coupling allows one to
reduce the dynamics of each neuron, which could be of very high dimension, to a
single differential equation describing the phase of the neuron.

The main goal of this chapter is to explain how a weakly coupled neuronal
network is reduced to its phase model description. Three different ways to derive the
phase equations are presented, each providing different insight into the underlying
dynamics of phase response properties and phase-locking dynamics. The technique
is illustrated for a weakly coupled pair of identical neurons. We then show how the
phase model for a pair of cells can be extended to include weak heterogeneity and
small amplitude noise. Lastly, we outline two mathematical techniques for analyzing
large networks of weakly coupled neurons.

1 Introduction

A phase response curve (PRC) (Winfree 1980) of an oscillating neuron measures
the phase shifts in response to stimuli delivered at different times in its cycle.
PRCs are often used to predict the phase-locking behavior in networks of neurons
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and to understand the mechanisms that underlie this behavior. There are two main
techniques for doing this. Each of these techniques requires a different kind of PRC,
and each is valid in a different limiting case. One approach uses PRCs to reduce
neuronal dynamics to firing time maps, e.g., (Ermentrout and Kopell 1998; Guevara
et al. 1986; Goel and Ermentrout 2002; Mirollo and Strogatz 1990; Netoff et al.
2005b; Oprisan et al. 2004). The second approach uses PRCs to obtain a set of
differential equations for the phases of each neuron in the network.

For the derivation of the firing time maps, the stimuli used to generate the PRC
should be similar to the input that the neuron actually receives in the network, i.e.,
a facsimile of a synaptic current or conductance. The firing time map technique
can allow one to predict phase locking for moderately strong coupling, but it
has the limitation that the neuron must quickly return to its normal firing cycle
before subsequent input arrives. Typically, this implies that input to a neuron
must be sufficiently brief and that there is only a single input to a neuron each
cycle. The derivation and applications of these firing time maps are discussed in
Chap. 4.

This chapter focuses on the second technique, which is often referred to as the
theory of weakly coupled oscillators (Ermentrout and Kopell 1984; Kuramoto 1984;
Neu 1979). The theory of weakly coupled oscillators can be used to predict phase
locking in neuronal networks with any form of coupling, but as the name suggests,
the coupling between cells must be sufficiently “weak” for these predictions to be
quantitatively accurate. This implies that the coupling can only have small effects
on neuronal dynamics over any given period. However, these small effects can
accumulate over time and lead to phase locking in the neuronal network. The theory
of weak coupling allows one to reduce the dynamics of each neuron, which could
be of very high dimension, to a single differential equation describing the phase of
the neuron. These “phase equations” take the form of a convolution of the input
to the neuron via coupling and the neuron’s infinitesimal PRC (iPRC). The iPRC
measures the response to a small brief (§-function-like) perturbation and acts like an
impulse response function or Green’s function for the oscillating neurons. Through
the dimension reduction and exploiting the form of the phase equations, the theory
of weakly coupled oscillators provides a way to identify phase-locked states and
understand the mechanisms that underlie them.

The main goal of this chapter is to explain how a weakly coupled neuronal
network is reduced to its phase model description. Three different ways to derive the
phase equations are presented, each providing different insight into the underlying
dynamics of phase response properties and phase-locking dynamics. The first
derivation (the ‘“Seat-of-the-Pants” derivation in Sect.3) is the most accessible.
It captures the essence of the theory of weak coupling and only requires the
reader to know some basic concepts from dynamical system theory and have a
good understanding of what it means for a system to behave linearly. The second
derivation (The Geometric Approach in Sect.4) is a little more mathematically
sophisticated and provides deeper insight into the phase response dynamics of
neurons. To make this second derivation more accessible, we tie all concepts
back to the explanations in the first derivation. The third derivation (The Singular
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Perturbation Approach in Sect. 5) is the most mathematically abstract but it provides
the cleanest derivation of the phase equations. It also explicitly shows that the iPRC
can be computed as a solution of the “adjoint” equations.

During these three explanations of the theory of weak coupling, the phase model
is derived for a pair of coupled neurons to illustrate the reduction technique. The
later sections (Sects.6 and 7) briefly discuss extensions of the phase model to
include heterogeneity, noise, and large networks of neurons.

For more mathematically detailed discussions of the theory of weakly coupled
oscillators, we direct the reader to (Ermentrout and Kopell 1984; Hoppensteadt and
Izhikevich 1997; Kuramoto 1984; Neu 1979).

2 Neuronal Models and Reduction to a Phase Model

2.1 General Form of Neuronal Network Models

The general form of a single or multicompartmental Hodgkin—Huxley-type neuronal
model (Hodgkin and Huxley 1952) is

dx
- = FX). (1.1)

where X is a N-dimensional state variable vector containing the membrane

potential(s) and gating variables', and F(X) is a vector function describing the rate

of change of the variables in time. For the Hodgkin—Huxley (HH) model (Hodgkin

and Huxley 1952), X = [V, m, h,n]" and
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(1.2)
In this chapter, we assume that the isolated model neuron (1.1) exhibits stable
T -periodic firing (e.g., top trace of Fig. 1.2). In the language of dynamical systems,
we assume that the model has an asymptotically stable T -periodic limit cycle. These
oscillations could be either due to intrinsic conductances or induced by applied
current.

'The gating variables could be for ionic membrane conductances in the neuron, as well as those
describing the output of chemical synapses.
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A pair of coupled model neurons is described by

dx
d—tl = F(X)) + el(X1, X») (1.3)
dx

d—f = F(X,) + eI (X2, X)), (1.4)

where I(X, X») is a vector function describing the coupling between the two
neurons, and ¢ scales the magnitude of the coupling term. Typically, in models
of neuronal networks, cells are only coupled through the voltage (V) equa-
tion. For example, a pair of electrically coupled HH neurons would have the
coupling term

& e (=)

I(X1.X,) = g . (1.5)

0

where gc is the coupling conductance of the electrical synapse (see Chap. 14).

2.2 Phase Models, the G-Function, and Phase Locking

The power of the theory of weakly coupled oscillators is that it reduces the dynamics
of each neuronal oscillator in a network to single phase equation that describes the
rate of change of its relative phase, ¢;. The phase model corresponding to the pair
of coupled neurons (1.3)—(1.4) is of the form

D cH@ - ) (16)
d
L2~ cH-(¢2 - 1) (1.7)

The following sections present three different ways of deriving the function H,
which is often called the interaction function.

Subtracting the phase equation for cell 1 from that of cell 2, the dynamics can
be further reduced to a single equation that governs the evolution of the phase
difference between the cells, ¢ = ¢ — ¢;

d
L = e(H(-0) - H@) = G). (1.8)
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Fig. 1.1 Example G function. The G function for two model Fast-Spiking (FS) interneurons
(Erisir et al. 1999) coupled with gap junctions on the distal ends of their passive dendrites is plotted.
The arrows show the direction of the trajectories for the system. This system has four steady state
solutions ¢s = 0, T (synchrony), ¢ap = T/2 (antiphase), and two other nonsynchronous states.
One can see that synchrony and antiphase are stable steady states for this system (filled in circles)
while the two other nonsynchronous solutions are unstable (open circles). Thus, depending on the
initial conditions, the two neurons will fire synchronously or in antiphase

In the case of a pair of coupled Hodgkin—Huxley neurons (as described above),
the number of equations in the system is reduced from the original 8 describing
the dynamics of the voltage and gating variables to a single equation. The reduction
method can also be readily applied to multicompartment model neurons, e.g., (Lewis
and Rinzel 2004; Zahid and Skinner 2009), which can render a significantly larger
dimension reduction. In fact, the method has been applied to real neurons as well,
e.g., Mancilla et al. 2007).

Note that the function G(¢) or “G-function” can be used to easily determine
the phase-locking behavior of the coupled neurons. The zeros of the G-function,
¢*, are the steady state phase differences between the two cells. For example, if
G(0) = 0, this implies that the synchronous solution is a steady state of the system.
To determine the stability of the steady state note that when G(¢) > 0, ¢ will
increase and when G(¢) < 0, ¢ will decrease. Therefore, if the derivative of G is
positive at a steady state (G'(¢*) > 0), then the steady state is unstable. Similarly,
if the derivative of G is negative at a steady state (G'(¢*) < 0), then the steady state
is stable. Figure 1.1 shows an example G-function for two coupled identical cells.
Note that this system has 4 steady states corresponding to ¢ = 0,7 (synchrony),
¢ = T/2 (antiphase), and two other nonsynchronous states. It is also clearly seen
that ¢ = 0, T and ¢ = T/2 are stable steady states and the other nonsynchronous
states are unstable. Thus, the two cells in this system exhibit bistability, and they
will either synchronize their firing or fire in antiphase depending upon the initial
conditions.
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In Sects.3, 4, and 5, we present three different ways of derive the interac-
tion function H and therefore the G-function. These derivations make several
approximations that require the coupling between neurons to be sufficiently weak.
“Sufficiently weak” implies that the neurons’ intrinsic dynamics dominate the
effects due to coupling at each point in the periodic cycle, i.e., during the
periodic oscillations, |F(X;(¢))| should be an order of magnitude greater than
lel(X;(t), X2(t))|. However, it is important to point out that, even though the phase
models quantitatively capture the dynamics of the full system for sufficiently small
&, it is often the case that they can also capture the qualitative behavior for moderate
coupling strengths (Lewis and Rinzel 2003; Netoff et al. 2005a).

3 A “Seat-of-the-Pants” Approach

This section will describe perhaps the most intuitive way of deriving the phase
model for a pair of coupled neurons (Lewis and Rinzel 2003). The approach
highlights the key aspect of the theory of weakly coupled oscillators, which is that
neurons behave linearly in response to small perturbations and therefore obey the
principle of superposition.

3.1 Defining Phase

T -periodic firing of a model neuronal oscillator (1.1) corresponds to repeated
circulation around an asymptotically stable 7 -periodic limit cycle, i.e., a closed orbit
in state space X . We will denote this 7" -periodic limit cycle solution as Xpc(¢). The
phase of a neuron is a measure of the time that has elapsed as the neuron’s moves
around its periodic orbit, starting from an arbitrary reference point in the cycle. We
define the phase of the periodically firing neuron j at time ¢ to be

0;(t) = (t + ¢;) mod T, (1.9)

where 6; = 0 is set to be at the peak of the neurons’ spike (Fig. 1.2).> The constant
¢;, which is referred to as the relative phase of the jth neuron, is determined by
the position of the neuron on the limit cycle at time # = 0. Note that each phase
of the neuron corresponds to a unique position on the cell’s 7 -periodic limit cycle,
and any solution of the uncoupled neuron model that is on the limit cycle can be
expressed as

Xj(t) = Xrc(0; (1)) = Xre(t + ¢;). (1.10)

2Phase is often normalized by the period 7 or by T/2m,so that 0 < 6§ < lor0 < 8 < 2x
respectively. Here, we do not normalize phase and take 0 < 6 < T'.
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Fig. 1.2 Phase. (a) Voltage trace for the Fast-Spiking interneuron model from Erisir et al. (1999)
with Iy = 35 uA/cm? showing T-periodic firing. (b) The phase 6(¢) of these oscillations
increases linearly from 0 to 7', and we have assumed that zero phase occurs at the peak of the
voltage spike

When a neuron is perturbed by coupling current from other neurons or by
any other external stimulus, its dynamics no longer exactly adhere to the limit
cycle, and the exact correspondence of time to phase (1.9) is no longer valid.
However, when perturbations are sufficiently weak, the neuron’s intrinsic dynamics
are dominant. This ensures that the perturbed system remains close to the limit
cycle and the interspike intervals are close to the intrinsic period 7. Therefore, we
can approximate the solution of neuron j by X;(t) = Xic(t + ¢;(¢)), where the
relative phase ¢; is now a function of time 7. Over each cycle of the oscillations,
the weak perturbations to the neurons produce only small changes in ¢;. These
changes are negligible over a single cycle, but they can slowly accumulate over
many cycles and produce substantial effects on the relative firing times of the
neurons.

The goal now is to understand how the relative phase ¢;(¢) of the coupled
neurons evolves slowly in time. To do this, we first consider the response of a neuron
to small abrupt current pulses.

3.2 The Infinitesimal Phase Response Curve

Suppose that a small brief square current pulse of amplitude ¢/, and duration Az
is delivered to a neuron when it is at phase 8*. This small, brief current pulse
causes the membrane potential to abruptly increase by §V =~ elyAt/C, i.e., the
change in voltage will approximately equal the total charge delivered to the cell by
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Fig. 1.3 Measuring the Phase Response Curve from Neurons. The voltage trace and correspond-
ing PRC is shown for the same FS model neuron from Fig. 1.2. The PRC is measured from a
periodically firing neuron by delivering small current pulses at every point, 6*, along its cycle and
measuring the subsequent change in period, A#, caused by the current pulse

the stimulus, ey At, divided by the capacitance of the neuron, C. In general, this
perturbation can cause the cell to fire sooner (phase advance) or later (phase delay)
than it would have fired without the perturbation. The magnitude and sign of this
phase shift depends on the amplitude and duration of the stimulus, as well as the
phase in the oscillation at which the stimulus was delivered, 6*. This relationship is
quantified by the Phase Response Curve (PRC), which gives the phase shift A¢ as
a function of the phase 6* for a fixed e /oAt (Fig. 1.3).

For sufficiently small and brief stimuli, the neuron will respond in a linear
fashion, and the PRC will scale linearly with the magnitude of the current stimulus

AG(6%) ~ Zy(0%) 8V = Zy(6%) (éeloAI), 0<6*<T, (L1

where Zy (0*) describes the proportional phase shift as a function of the phase of
the stimulus. The function Zy (0) is known as the infinitesimal phase response curve
(iPRC) or the phase-dependent sensitivity function for voltage perturbations. The
iPRC Zy (6) quantifies the normalized phase shift due to an infinitesimally small
d-function-like voltage perturbation delivered at any given phase on the limit cycle.

3.3 The Phase Model for a Pair of Weakly Coupled Cells

Now we can reconsider the pair of weakly coupled neuronal oscillators (1.3)—(1.4).
Recall that, because the coupling is weak, the neurons’ intrinsic dynamics dominate
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the dynamics of the coupled-cell system, and X;(t) ~ Xic(0;(t)) = Xic(t +
¢;(t)) for j = 1,2. This assumes that the coupling current can only affect the
speed at which cells move around their limit cycle and does not affect the amplitude
of the oscillations. Thus, the effects of the coupling are entirely captured in the slow
time dynamics of the relative phases of the cells ¢; (¢).

The assumption of weak coupling also ensures that the perturbations to the
neurons are sufficiently small so that the neurons respond linearly to the coupling
current. That is, (i) the small phase shifts of the neurons due to the presence of the
coupling current for a brief time Az can be approximated using the iPRC (1.11),
and (ii) these small phase shifts in response to the coupling current sum linearly
(i.e., the principle of superposition holds). Therefore, by (1.11), the phase shift due
to the coupling current from ¢ to ¢ + At is

Agj(t) = ¢;(t + A1) —¢;(1)
> Zy(0;(1) (eI(X; (1), Xk (1)) At.
=Zy(t +¢; (1) (eI(Xrc(t + ¢ (1)), Xee(t + ¢ (1)) At (1.12)

By dividing the above equation by At and taking the limit as At — 0, we obtain
a system of differential equations that govern the evolution of the relative phases of
the two neurons

d .
% =eZy(t+¢;) I(Xict +¢)), Xct+r)),  j.k=1,2; j #k. (1.13)

Note that, by integrating this system of differential equations to find the solution
¢; (), we are assuming that phase shifts in response to the coupling current sum
linearly.

The explicit time dependence on the right-hand side of (1.13) can be eliminated
by “averaging” over the period 7. Note that Zy (t) and Xyc(¢) are T-periodic
functions, and the scaling of the right-hand side of (1.13) by the small parameter
¢ indicates that changes in the relative phases ¢; occur on a much slower timescale
than 7. Therefore, we can integrate the right-hand side over the full period T
holding the values of ¢; constant to find the average rate of change of ¢; over a
cycle. Thus, we obtain equations that approximate the slow time evolution of the
relative phases ¢,

. T
dg; _ 5% /0 Zy (0 (I(Xic @), XicF + ¢ — 7)) di

dr
=eH(pr — ;). j.k=12;j #k, (1.14)
i.e., the relative phases ¢; are assumed to be constant with respect to the integral

over T in 7, but they vary in . This averaging process is made rigorous by averaging
theory (see Ermentrout and Kopell 1991; Guckenheimer and Holmes 1983).
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We have reduced the dynamics of a pair of weakly coupled neuronal oscillators
to an autonomous system of two differential equations describing the phases of
the neurons and therefore finished the first derivation of the equations for a pair
of weakly coupled neurons.® Note that the above derivation can be easily altered
to obtain the phase model of a neuronal oscillator subjected to T -periodic external
forcing as well. The crux of the derivation was identifying the iPRC and exploiting
the approximately linear behavior of the system in response to weak inputs. In fact,
it is useful to note that the interaction function H takes the form of a convolution
of the iPRC and the coupling current, i.e., the input to the neuron. Therefore, one
can think of the iPRC of an oscillator as acting like an impulse response function or
Green’s function.

3.3.1 Averaging Theory

Averaging theory (see Ermentrout and Kopell 1991; Guckenheimer and Holmes
1983) states that there is a change of variables that maps solutions of

dp -
il eg(o,1), (1.15)

where g(¢,1) is a T-periodic function in ¢ and 7, to solutions of

d
d—(f = £3(p) + O(?), (1.16)
where
1 (7 .
glp) = 7/ glp, 1)dt, (1.17)
0

and O(¢?) is Landau’s “Big O” notation, which represents terms that either have a
scaling factor of &2 or go to zero at the same rate as £ goes to zero as & goes to zero.

4 A Geometric Approach

In this section, we describe a geometric approach to the theory of weakly coupled
oscillators originally introduced by Kuramoto (1984). The main asset of this
approach is that it gives a beautiful geometric interpretation of the iPRC and deepens
our understanding of the underlying mechanisms of the phase response properties
of neurons.

3Note that this reduction is not valid when T is of the same order of magnitude as the timescale
for the changes due to the weak coupling interactions (e.g., close to a SNIC bifurcation), however
an alternative dimension reduction can be performed in this case (Ermentrout 1996).
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4.1 The One-to-One Map Between Points on the Limit Cycle
and Phase

Consider again a model neuron (1.1) that has a stable 7 -periodic limit cycle solution
Xic(?) such that the neuron exhibits a 7T -periodic firing pattern (e.g., top trace of
Fig. 1.2). Recall that the phase of the oscillator along its limit cycle is defined as
0(t) = (t + ¢) mod T, where the relative phase ¢ is a constant that is determined
by the initial conditions. Note that there is a one-to-one correspondence between
phase and each point on the limit cycle. That is, the limit cycle solution takes phase
to a unique point on the cycle, X = X1 ¢(0), and its inverse maps each point on the
limit cycle to a unique phase, 6 = X[ (X) = ®(X).

Note that it follows immediately from the definition of phase (1.9) that the rate of
change of phase in time along the limit cycle is equal to 1, i.e., % = 1. Therefore,
if we differentiate the map ®(X) with respect to time using the chain rule for vector
functions, we obtain the following useful relationship

dXic

i = Vx®(Xrc(?)) - i

dr

= Vx@(Xpc(1)) - F(XLc(@))) = 1, (1.18)

where Vy ® is the gradient of the map ®(X) with respect to the vector of the
neuron’s state variables X = (x,x2,...,xy)

T
i| . (1.19)
X

T 00) — [(aep 90 aq>)

E)xl ’ 8x2 T axN

(We have defined the gradient as a column vector for notational reasons).

4.2 Asymptotic Phase and the Infinitesimal Phase
Response Curve

The map 0 = ®(X) is well defined for all points X on the limit cycle. We can
extend the domain of ®(X) to points off the limit cycle by defining asymptotic
phase. If X, is a point on the limit cycle and Yj is a point in a neighborhood
of the limit cycle®, then we say that Y, has the same asymptotic phase as X if
[|X(t; Xo) — X(t; Yo)|| — 0 as t — oo. This means that the solution starting at the
initial point Y off the limit cycle converges to the solution starting at the point X
on the limit cycle as time goes to infinity. Therefore, ®(Yy) = ®(Xy). The set of

“In fact, the point Y, can be anywhere in the basin of attraction of the limit cycle.
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Fig. 1.4 Example Isochron Structure. (a) The limit cycle and isochron structure for the Morris—
Lecar neuron (Morris and Lecar 1981) is plotted along with the nullclines for the system. (b) Blow
up of a region on the left-hand side of the limit cycle showing how the same strength perturbation
in the voltage direction can cause different phase delays or phase advances. (¢) Blow up of a region
on the right-hand side of the limit cycle showing also that the same size voltage perturbation can
cause phase advances of different sizes

all points off the limit cycle that have the same asymptotic phase as the point X, on
the limit cycle is known as the isochron (Winfree 1980) for phase 6 = ®(X)).
Figure 1.4 shows some isochrons around the limit cycle for the Morris—Lecar
neuron (Morris and Lecar 1981). It is important to note that the figure only plots
isochrons for a few phases and that every point on the limit cycle has a corresponding
isochron.

Equipped with the concept of asymptotic phase, we can now show that the iPRC
is in fact the gradient of the phase map Vy ®(XLc(?)) by considering the following
phase resetting “experiment”. Suppose that, at time #, the neuron is on the limit
cycle in state X(¢) = Xpc(6*) with corresponding phase 6* = ®(X(¢)). At this
time, it receives a small abrupt external perturbation eU, where ¢ is the magnitude
of the perturbation and U is the unit vector in the direction of the perturbation in
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state space. Immediately after the perturbation, the neuron is in the state Xyc(6*) +
eU, and its new asymptotic phase is § = ®(XLc(0*) + eU). Using Taylor
series,

0 = O(Xic(6%) +eU) = d(X1c(0%)) + Vx @(Xic(6%) - (eU) + O(e?). (1.20)

Keeping only the linear term (i.e., O(¢g) term), the phase shift of the neuron as a
function of the phase 8* at which it received the eU perturbation is given by

AP(0*) =0 — 0% ~ Vyd(X1c(0%)) - (eU). (1.21)

As was done in Sect.3.2, we normalize the phase shift by the magnitude of the
stimulus,

*
% ~ Vx®(XLc(8%) - U = Z(6%) - U. (1.22)
Note that Z(0) = Vx®(XLc(9)) is the iPRC. It quantifies the normalized phase
shift due to a small delta-function-like perturbation delivered at any given on the
limit cycle. As was the case for the iPRC Zy derived in the previous section
[see (1.11)], Vx ®(XLc(6)) captures only the linear response of the neuron and is
quantitatively accurate only for sufficiently small perturbations. However, unlike
Zy, Vy®(XLc(9)) captures the response to perturbations in any direction in
state space and not only in one variable (e.g., the membrane potential). That is,
Vx®(XLc(0)) is the vector iPRC; its components are the iPRCs for every variable
in the system (see Fig. 1.5).

In the typical case of a single-compartment HH model neuron subject to an
applied current pulse (which perturbs only the membrane potential), the perturbation
would be of the form eU = (,0,0,...,0) where x; is the membrane potential V.
By (1.20), the phase shift is

AB(6) = 0 (Xic(6)) 1 = Zy(6) . (1.23)

which is the same as (1.11) derived in the previous section.
With the understanding that Vy ®(X1¢(?)) is the vector iPRC, we now derive the
phase model for two weakly coupled neurons.

4.3 A Pair of Weakly Coupled Oscillators

Now consider the system of weakly coupled neurons (1.3)—(1.4). We can use the
map ® to take the variables X;(¢) and X,(¢) to their corresponding asymptotic
phase, ie., 0;(t) = ®(X;(¢)) for j = 1, 2. By the chain rule, we obtain the change
in phase with respect to time
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Fig. 1.5 iPRCs for the Morris—Lecar Neuron. The voltage, V(¢) and channel, w(t), components
of the limit cycle for the same Morris—Lecar neuron as in Fig. 1.4 are plotted along with their
corresponding iPRCs. Note that the shape of voltage iPRC can be inferred from the insets of
Fig. 1.4. For example, the isochronal structure in Fig. 1.4c reveals that perturbations in the voltage
component will cause phase advances when the voltage is ~30 to 38 mV

do; dX;
d_t] = Vx®(X;()) - d_t]
= Vx®(X; (1) - [F(X;(1)) + el (X; (1), Xi(1))]
= Vx®(X; (1) - F(X; (1)) + Vx (X (1)) - [e1(X; (1), Xk (1))]

14 eVy®(X; (1)) - 1(X; (1), Xi (1)), (1.24)

where we have used the “useful” relation (1.18). Note that the above equations are
exact. However, in order to solve the equations for 6;(¢), we would already have
to know the full solutions X;(¢) and X,(¢), in which case you wouldn’t need to
reduce the system to a phase model. Therefore, we exploit that fact that ¢ is small
and make the approximation X;(t) ~ Xvc(0,(t)) = Xic(t + ¢;(2)), ie., the
coupling is assumed to be weak enough so that it does not affect the amplitude of
the limit cycle, but it can affect the rate at which the neuron moves around its limit
cycle. By making this approximation in (1.24) and making the change of variables
0;(t) =t + ¢, (t), we obtain the equations for the evolution of the relative phases
of the two neurons

%’ = eV B(Xic(t + (1) - I(Xiclt + b, (). Xeclt + (). (125)

Note that these equations are the vector versions of (1.13) with the iPRC written as
Vx®(XLc(?)). As described in the previous section, we can average these equations
over the period 7 to eliminate the explicit time dependence and obtain the phase
model for the pair of coupled neurons
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dg; 17 - - - -
Y e [ VO T Xiel®). Xuc + (B~ 9N = eH B ).
1 T ),
(1.26)

Note that while the above approach to deriving the phase equations provides
substantial insight into the geometry of the neuronal phase response dynamics, it
does not provide a computational method to compute the iPRC for model neurons,
i.e., we still must directly measure the iPRC using extensive numerical simulations
as described in the previous section.

S A Singular Perturbation Approach

In this section, we describe the singular perturbation approach to derive the
theory of weakly coupled oscillators. This systematic approach was developed by
Malkin (1949; 1956), Neu (1979), and Ermentrout and Kopell (1984). The major
practical asset of this approach is that it provides a simple method to compute iPRCs
for model neurons.

Consider again the system of weakly coupled neurons (1.3)—(1.4). We assume
that the isolated neurons have asymptotically stable 7" -periodic limit cycle solutions
Xic(t) and that coupling is weak (i.e., € is small). As previously stated, the weak
coupling has small effects on the dynamics of the neurons. On the timescale of a
single cycle, these effects are negligible. However, the effects can slowly accumulate
on a much slower timescale and have a substantial influence on the relative firing
times of the neurons. We can exploit the differences in these two timescales and use
the method of multiple scales to derive the phase model.

First, we define a “fast time” /s = ¢, which is on the timescale of the period of
the isolated neuronal oscillator, and a “slow time” f; = ef, which is on the timescale
that the coupling affects the dynamics of the neurons. Time, ¢, is thus a function of
both the fast and slow times, i.e., = f(¢7, ). By the chain rule, d% = % + 8%
We then assume that solutions X (¢) and X»(¢) can be expressed as power series in
¢ that are dependent both on 7 and iy,

X;(0) = X0tr. 1) +eX}(ty.1) + O, j =12
Substituting these expansions into (1.3)—(1.4) yields

Ff+eats +£W+ (e7) = F(X; +eX; + O(¢7))

+el(X)+eX| + O@), X + X + O(%)),
k=12 #k. (1.27)
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Using Taylor series to expand the vector functions F and [ in terms of &, we obtain
F(X]+ X} 4+ O(e%) = F(XY) + eDF(X))X | + O(¢”) (1.28)
el(X9 4+ eX| + O(), X +eX| + O() = el (X, X)) + O(e?),  (1.29)

where DF (XJQ) is the Jacobian, i.e., matrix of partial derivatives, of the vector
function F'(X;) evaluated at X ;). We then plug these expressions into (1.27), collect

like terms of ¢, and equate the coefficients of like terms.’
The leading order (O(1)) terms yield

0X] F(X))., j=12 1.30
Ff_(j)’J_" (1.30)
These are the equations that describe the dynamics of the uncoupled cells. Thus,
to leading order, each cell exhibits the 7 '-periodic limit cycle solution X }) (tr.ts) =
Xrc(ty + ¢;(t5)). Note that (1.30) implies that the relative phase ¢; is constant in
I, but it can still evolve on the slow timescale ;.

Substituting the solutions for the leading order equations (and shifting 7y
appropriately), the O(¢) terms of (1.27) yield

ax!
LX) = L — DF(Xic(tp) X! = I(Xuclin), Xicly — (6 (1) — di. (1))

ot f
do;
—Xﬁc(tf)d—’. (1.31)
Ls
To simplify notation, we have defined the linear operator LX = X _ pF

dty
(XLc(tr))X, which acts on a T-periodic domain and is therefore bounded. Note

that (1.31) is a linear differential equation with 7'-periodic coefficients. In order
for our power series solutions for X;(¢) and X,(¢) to exist, a solution to (1.31)
must exist. Therefore, we need to find conditions that guarantee the existence of a
solution to (1.31), i.e., conditions that ensure that the right-hand side of (1.31) is in
the range of the operator £. The Fredholm Alternative explicitly provides us with
these conditions.

Theorem 1 (Fredholm Alternative). Suppose that

dx
dt

where the matrix A () and the vector function f(¢) are continuous and 7 -periodic.
Then, there is a continuous 7 -periodic solution x (¢) to (*) if and only if

(%) Lx = + A(t)x = f(1); x e RY,

1 T
() 7/0 Z(t)- f(t)dt =0,

Because the equation should hold for arbitrary &, coefficients of like terms must be equal.
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for each continuous 7 -periodic solution, Z(¢), to the adjoint problem

dz
Lix = - +{A0)'Z =0.

where {A(¢)7} is the transpose of the matrix A(t).
In the notation of the above theorem,

A(t) = =DF(X1c(ty)) and f(t) = I(Xic(ty), Xic(ty — () (ts) — i (t5))))

do;
_Xﬁc(ff)d—t‘j-

Thus, the solvability condition (**) requires that

l/TZ(«y I(Xue(t ). Xoelty — @) (1) — b)) — Xiolt )2 L ar, = 0
T J, f LCc\tf), ALCUf j s k\Ls LCfdts f

(1.32)
where Z is a T-periodic solution of the adjoint equation
N Z T
L7 = vl DF(Xic(ty)) Z =0. (1.33)
7

Rearranging (1.32),

o - 1/TZU‘)'[I(X (t7), Xuclty — (@ () — ()] dry - (134
e, T Jo Y Le(tr). Xee(ty — (¢ (L) — e (1 / 34)

where we have normalized Z () by

T T
%/0 Z(l‘f) . [X]/“C(l‘f)]dl‘f = %/0 Z(l‘f) . F(XLC(Zf))dlf = 1. (1.35)

This normalization of Z(ty) is equivalent to setting Z(0) - X{~(0) = Z(0) -
F(X]~(0)) = 1, because Z(t) - X{~(t) is a constant (see below).

Finally, recalling that f, = 7 and 7y = ¢, we obtain the phase model for the pair
of coupled neurons

%_81/Tz@)-[1(x (7). Xuc (i — (¢; — )T = eH(gx—;). (136)
a T, e P I

By comparing these phase equations with those derived in the previous sections,
it is clear that the appropriately normalized solution to the adjoint equations Z () is
the iPRC of the neuronal oscillator.
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5.1 A Note on the Normalization of Z(t)

S 120 Fen) = 52 FOe) + 200+ S IFc)]

(=DF(X1.c()" Z) - F(X1c(t))
+ Z(t) - (DF (X1c(1) X{ (1))
= —Z(t) - (DF(X1.c(t)) F (X1c(1)))

+ Z(t) - (DF(XLc(1) F(XLc(1)))
=0.

This implies that Z(¢) - F(XLc(?)) is a constant. The integral form of the normal-
ization of Z(¢) (1.35) implies that this constant is 1. Thus, Z(t) - F(Xpc(t)) =
Z(t)- X[/ () = 1forall ¢, including ¢ = 0.

5.2 Adjoints and Gradients

The intrepid reader who has trudged their way through the preceding three sections
may be wondering if there is a direct way to relate the gradient of the phase map
Vx®(XLc(?)) to solution of the adjoint equation Z(¢). Here, we present a direct
proof that Vy ® (X c(¢)) satisfies the adjoint equation (1.33) and the normalization
condition (1.35) (Brown et al. 2004).

Consider again the system of differential equations for an isolated neuronal
oscillator (1.1) that has an asymptotically stable 7'-periodic limit cycle solution
Xi1c(t). Suppose that X(t) = Xprc(t + ¢) is a solution of this system that is
on the limit cycle, which starts at point X(0) = Xpc(¢). Further suppose that
Y(t) = Xrc(t + ¢) + p(¢) is a solution that starts at from the initial condition
Y(0) = Xrc(¢) + p(0), where p(0) is small in magnitude. Because this initial
perturbation p(0) is small and the limit cycle is stable, (i) p(z) remains small and,
to O(|p|), p(t) satisfies the linearized system

dp

T DF(Xic(t +¢)p, (1.37)

and (ii) the phase difference between the two solutions is

Ap=D(Xrc(14+¢)+p(1)=P(Xic(t+¢))=Vx (Xic(t+¢)) - p(1)+O(|p[*)
(1.38)
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Furthermore, while the asymptotic phases of the solutions evolve in time, the phase
difference between the solutions A¢ remains constant. Therefore, by differentiating
equation (1.38), we see that to O(| p|)

0= % [Vx@(Xrc(t + ¢)) - p(1)]
= d% [Vx®(X1c(t + @) - p(t) + Vx P (Xic(t + @) - ‘(’1_1;’
= %[Vx Q(Xic(t + @) p(t) + Vx P(Xic(t + @) - (DF(Xic(t + ¢))p(1))
= %[Vx O(Xrc(t + @) -p(1) + (DF (Xt + ¢) Vx ®(Xic(t + @) -p(t)

IVt + )] + DF (Xiclt + )" (Va@(Xiclt + 9| - ple).

Because p is arbitrary, the above argument implies that Vy®(Xyc(¢)) solves
the adjoint equation (1.33). The normalization condition simply follows from the
definition of the phase map [see (1.18)], i.e.,

dé
o = Vr®Xic@) - X = 1. (1.39)

5.3 Computing the PRC Using the Adjoint method

As stated in this beginning of this section, the major practical asset of the singular
perturbation approach is that it provides a simple method to compute the iPRC for
model neurons. Specifically, the iPRC is a T -period solution to

% = —DF (X c(t)'Z (1.40)

subject to the normalization constraint

Z(0) - X[ (0) = 1. (1.41)

This equation is the adjoint equation for the isolated model neuron (1.1) linearized
around the limit cycle solution Xy ¢ ().

In practice, the solution to (1.40) is found by integrating the equation backward in
time (Williams and Bowtell 1997). The adjoint system has the opposite stability of
the original system (1.1), which has an asymptotically stable 7' -periodic limit cycle
solution. Thus, we integrate backward in time from an arbitrary initial condition
so as to dampen out the transients and arrive at the (unstable) periodic solution
of (1.40). To obtain the iPRC, we normalize the periodic solution using (1.41).
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This algorithm is automated in the software package XPPAUT (Ermentrout 2002),
which is available for free on Bard Ermentrout’s webpage www.math.pitt.edu/~
bard/bardware/.

6 Extensions of Phase Models for Pairs of Coupled Cells

Up to this point, we have been dealing solely with pairs of identical oscillators that
are weakly coupled. In this section, we show how the phase reduction technique can
be extended to incorporate weak heterogeneity and weak noise.

6.1 Weak Heterogeneity

Suppose that the following system

% = Fj(X)) +el(Xp, X;) = F(X;) + e[ [; (X)) + I(Xx, X;)]  (1.42)
describes two weakly coupled neuronal oscillators (note that the vector functions
F;(X;) are now specific to each neuron). If the two neurons are weakly heteroge-
neous, then their underlying limit cycles are equivalent up to an O(e) difference.
That is, F;(X;) = F(X;) + &f;(X;), where f;(X;) is a vector function that
captures the O(¢e) differences in the dynamics of cell 1 and cell 2 from the
function F(X;). These differences may occur in various places such as the value
of the neurons’ leakage conductances, the applied currents, or the leakage reversal
potentials, etc.

As in the previous sections, (1.42) can be reduced to the phase model

, T
B (% /0 20 - [y (X)) + I(Xue@). XocF + de — )] di’)

=sw; +cH(¢r — ¢;), (1.43)

where w; = 1 fOT Z(7) - fj(X1c(7))dt represents the difference in the intrinsic
frequencies of each neuron caused by the presence of the weak heterogeneity. If we
now let ¢ = ¢» — ¢;, we obtain

d
D = (H(-9)~ H$) + Bo)

= &(G(9) + Aw). (1.44)


www.math.pitt.edu/~bard/bardware/
www.math.pitt.edu/~bard/bardware/
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Fig. 1.6 Example G Function with Varying Heterogeneity. Example of varying levels of het-
erogeneity with the same G function as in Fig. 1.1. One can see that the addition of any level
of heterogeneity will cause the stable steady-state phase-locked states to move to away from
the synchronous and antiphase states to nonsynchronous phase-locked states. Furthermore, if the
heterogeneity is large enough, the stable steady state phase-locked states will disappear completely
through saddle node bifurcations

where Aw = w; — w;. The fixed points of (1.44) are given by G(¢) = —Aw. The
addition of the heterogeneity changes the phase-locking properties of the neurons.
For example, suppose that in the absence of heterogeneity (Aw = 0) our G function
is the same as in Fig. 1.1, in which the synchronous solution, ¢s = 0, and the
antiphase solution, ¢ap, are stable. Once heterogeneity is added, the effect will be
to move the neurons away from either firing in synchrony or anti-phase to a constant
non-synchronous phase shift, as in Fig. 1.6. For example, if neuron 1 is faster than
neuron 2, then Aw < 0 and the stable steady state phase-locked values of ¢ will be
shifted to left of synchrony and to the left of anti-phase, as is seen in Fig. 1.6 when
Aw = —0.5. Thus, the neurons will still be phase-locked, but in a nonsynchronous
state that will either be to the left of synchronous state or to the left of the antiphase
state depending on the initial conditions. Furthermore, if Aw is decreased further,
saddle node bifurcations occur in which a stable and unstable fixed point collide
and annihilate each other. In this case, the model predicts that the neurons will not
phase-lock but will drift in and out of phase.

6.2 Weakly Coupled Neurons with Noise

In this section, we show how two weakly coupled neurons with additive white noise
in the voltage component can be analyzed using a probability density approach
(Kuramoto 1984; Pfeuty et al. 2005).
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The following set of differential equations represent two weakly heterogeneous
neurons being perturbed with additive noise

dX;

= = B + el (Xe, X)) + 8N, (), i, = 1,20 # . (1.45)

where § scales the noise term to ensure that it is O(¢). The term N (¢) is a vector
with Gaussian white noise, £; (¢), with zero mean and unit variance (i.e., (§; (t)) = 0
and (§;()§;(¢")) = &(t — 1)) in the voltage component, and zeros in the other
variable components. In this case, the system can be mapped to the phase model

L = ew) + Hi— 9) + 008 (1) (1.46)

2\ 1/2
where the term oy = (% fOT[Z (t)]zdt) comes from averaging the noisy phase
equations (Kuramoto 1984). If we now let ¢ = ¢ — ¢, we arrive at

d¢ =¢e(Aw + (H(—¢) — H(¢))) + doy V2n(1). (1.47)

where Aw = w; — w; and v/21(t) = &(t) — & (t) where n(¢) is Gaussian white
noise with zero mean and unit variance.

The nonlinear Langevin equation (1.47) corresponds to the Fokker—Planck
equation (Risken 1989; Stratonovich 1967; Van Kampen 1981)

0
PBu1) = =55 (B0 + GNP + Gl 4y

¢
where p(¢,t) A¢ is the probability that the neurons have a phase difference
between ¢ and ¢ + A¢ at time ¢, where A¢ is small. The steady-state (ap = O)
solution of (1.48) is

—aTAw
o) = Lo | €T widgg (1.49)
[ e=M@dg Jo ’

where

¢ _ _
M(@) = o /0 (Ao + G(§))dd. (1.50)

N is a normalization factor so that fOT p(p)dgp = 1,and a = @ represents the

ratio of the strength of the coupling to the variance of the noise.
The steady-state solution p(¢) gives the distribution of the phase differences
between the two neurons ¢ as time goes to infinity. Pfeuty et al. (2005) showed that
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Fig. 1.7 The Steady-State Phase Difference Distribution p(¢) is the Cross-Correlogram for
the Two Neurons. (a) Cross-correlogram for the G function given in Fig. 1.1 with « = 10.
Note that ¢ ranges from —7/2 to T/2. The cross-correlogram has two peaks corre-
sponding to the synchronous and antiphase phase-locked states. This is due to the fact
that in the noiseless system, synchrony and antiphase were the only stable steady states.
(b) Cross-correlograms for two levels of heterogeneity from Fig. 1.6. The cross-correlogram from
(a) is plotted as the light solid line for comparison. The peaks in the cross-correlogram have shifted
to correspond with the stable nonsynchronous steady-states in Fig. 1.6

spike-train cross-correlogram of the two neurons is equivalent to the steady state
distribution (1.49) for small ¢. Figure 1.7a shows the cross-correlogram for two
identical neurons (Aw = 0) using the G function from Fig. 1.1. One can see that
there is a large peak in the distribution around the synchronous solution (¢s = 0),
and a smaller peak around the antiphase solution (¢ap = 7°/2). Thus, the presence
of the noise works to smear out the probability distribution around the stable steady-
states of the noiseless system.

If heterogeneity is added to the G function as in Fig. 1.6, one would expect that
the peaks of the cross-correlogram would shift accordingly so as to correspond to
the stable steady states of the noiseless system. Figure 1.7b shows that this is indeed
the case. If Aw < 0 (Aw > 0), the stable steady states of the noiseless system shift
to the left (right) of synchrony and to the left (right) of antiphase, thus causing the
peaks of the cross-correlogram to shift left (right) as well. If we were to increase
(decrease) the noise, i.e., decrease (increase) «, then we would see that the variance
of the peaks around the stable steady states becomes larger (smaller), according
to (1.49).

7 Networks of Weakly Coupled Neurons

In this section, we extend the phase model description to examine networks of
weakly coupled neuronal oscillators.

Suppose we have a one spatial dimension network of M weakly coupled and
weakly heterogeneous neurons
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dx; e I
= = E&X)+ A S s I(X; X)), i= 1. M (1.51)

J=1

where S = {s;;} is the connectivity matrix of the network, My is the maximum
number of cells that any neuron is connected to and the factor of MLO ensures that the
perturbation from the coupling is O(g). As before, this system can be reduced to the
phase model

dep; ¢ o

— =wi+-— ) sH(p;—¢). i=1..,M. 1.52
The connectivity matrix, S, can be utilized to examine the effects of network
topology on the phase-locking behavior of the network. For example, if we wanted
to examine the activity of a network in which each neuron is connected to every
other neuron, i.e., all-to-all coupling, then

sy =1, i,j=1,..,M. (1.53)

Because of the nonlinear nature of (1.52), analytic solutions normally cannot be
found. Furthermore, it can be quite difficult to analyze for large numbers of neurons.
Fortunately, there exist two approaches to simplifying (1.52) so that mathematical
analysis can be utilized, which is not to say that simulating the system (1.52) is not
useful. Depending upon the type of interaction function that is used, various types
of interesting phase-locking behavior can be seen, such as total synchrony, traveling
oscillatory waves, or, in two spatial dimensional networks, spiral waves, and target
patterns, e.g. (Ermentrout and Kleinfeld 2001; Kuramoto 1984).

A useful method of determining the level of synchrony for the network (1.52) is
the so-called Kuramoto synchronization index (Kuramoto 1984)

M
1
ZHJjIW/T 2ﬂ«/j¢~/T
re = E e e (1.54)

j=1

where V¥ is the average phase of the network, and r is the level of synchrony of the
network. This index maps the phases, ¢;, to vectors in the complex plane and then
averages them. Thus, if the neurons are in synchrony, the corresponding vectors will
all be pointing in the same direction and r will be equal to one. The less synchronous
the network is, the smaller the value of r.

In the following two sections, we briefly outline two different mathematical
techniques for analyzing these phase oscillator networks in the limit as M goes
to infinity.
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7.1 Population Density Method

A powerful method to analyze large networks of all-to-all coupled phase oscillators
was introduced by Strogatz and Mirollo (1991) where they considered the so-called
Kuramoto model with additive white noise

M
R 37 22 Hby =00+ 050 (1.59)
where the interaction function is a simple sine function, i.e., H(¢) = sin(¢). A
large body of work has been focused on analyzing the Kuramoto model as it is the
simplest model for describing the onset of synchronization in populations of coupled
oscillators (Acebron et al. 2005; Strogatz 2000). However, in this section, we will
examine the case where H(¢) is a general T -periodic function.

The idea behind the approach of (Strogatz and Mirollo 1991) is to derive the
Fokker-Planck equation for (1.55) in the limit as M — oo, i.e., the number of
neurons in the network is infinite. As a first step, note that by equating real and
imaginary parts in (1.54) we arrive at the following useful relations

M
reosr(y — 4/ T) = 12 Y cosCr(@; —)/T)  (156)

j=1
M
. 1 .
rsinQr(y — i)/ T) = 5 > sin@r(¢; — 1)/ T). (1.57)
j=1
Next, we note that since H(¢) is T -periodic, we can represent it as a Fourier series

H@;—4) = 7 Y an cos@n(@; —90)/ T) -+ by sin(@n(@; 1)/ T). (1.58)
n=0

Recognizing that (1.56) and (1.57) are averages of the functions cosine and sine,
respectively, over the phases of the oscillators, we see that, in the limit as M goes
to infinity (Neltner et al. 2000; Strogatz and Mirollo 1991)

00 T
raycosrn(Y, —¢)/T) = ay /_ /0 g(@)p($, w, 1) cosrn(¢ — ¢)/T)ddpdw
(1.59)

o0 T
rby, sinQen(y, —$)/T) = b, [_ /0 g(@)p(¢. . 1) sinrn(¢ — ¢)/T)dpdw,
(1.60)
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where we have used the Fourier coefficients of H(¢; — ¢i). p(¢,w, 1) is the
probability density of oscillators with intrinsic frequency w and phase ¢ at time
t, and g(w) is the density function for the distribution of the frequencies of the
oscillators. Furthermore, g (w) also satisfies f_ozo g(w)dw = 1. With all this in mind,
we can now rewrite the infinite M approximation of (1.55)

C:i—(f = w—i—s% r;[ran cosQran(y, —@)/T) + rb, sinRQuen(y, — ¢)/T)]|+0E(1).
(1.61)

The above nonlinear Langevin equation corresponds to the Fokker—Planck equation

op 0 o? 9p
5 P01 = —@U@J)P@,w’ﬂ] + 78752((15’@’1)’ (1.62)
with
J(@, 1) =0+ 8% Z [ra,cosRun(yY, —¢)/T) + rb, sinQun(y, —¢)/T)].
n=0

(1.63)

and fOT plp,w,t)d¢p = 1 and p(¢p,w,t) = p(¢p + T,w,t). Equation (1.62) tells
us how the fraction of oscillators with phase ¢ and frequency w evolves with
time. Note that (1.62) has the trivial solution py(¢,w,t) = %, which corresponds
to the incoherent state in which the phases of the neurons are uniformly distributed
between 0 and 7.

To study the onset of synchronization in these networks, Strogatz and Mirollo
(1991) and others, e.g. (Neltner et al. 2000), linearized equation (1.62) around the
incoherent state, pg, in order to determine its stability. They were able to prove that
below a certain value of ¢, the incoherent state is neutrally stable and then loses
stability at some critical value ¢ = g¢. After this point, the network becomes more
and more synchronous as ¢ is increased.

7.2 Continuum Limit

Although the population density approach is a powerful method for analyzing the
phase-locking dynamics of neuronal networks, it is limited by the fact that it does
not take into account spatial effects of neuronal networks. An alternative approach
to analyzing (1.52) in the large M limit that takes into account spatial effects is to
assume that the network of neuronal oscillators forms a spatial continuum (Bressloff
and Coombes 1997; Crook et al. 1997; Ermentrout 1985).

Suppose that we have a one-dimensional array of neurons in which the jth
neuron occupies the position x; = jAx where Ax is the spacing between the
neurons. Further suppose that the connectivity matrix is defined by § = {s;;} =
W(|x; — x;|), where W(|x[) — 0 as |x| — oo and > 72 W(x;j)Ax = 1. For

j=—00
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example, the spatial connectivity matrix could correspond to a Gaussian function,
Ixj—x; 1%

W(lx; —xi|) = e 22 , so that closer neurons have more strongly coupled to
each other than to neurons that are further apart. We can now rewrite (1.52) as

d o0
d—f(xi,t) =w(x;)+e Z [W(lx; —xi]) Ax H (¢p(x;.1) — ¢(x;,1))], (1.64)

j=—00

where ¢ (x;,1) = ¢;i(t), w(x;) = w; and we have taken 1/M = Ax. By taking the
limit of Ax — 0 (M — o0) in (1.64), we arrive at the continuum phase model

%—f(x,t) =w(x) + 6/00 W(lx —x|) H(p(x,t) —¢(x,1)) dx, (1.65)

where ¢ (x, ) is the phase of the oscillator at position x and time ¢. Note that
this continuum phase model can be modified to account for finite spatial domains
(Ermentrout 1992) and to include multiple spatial dimensions.

Various authors have utilized this continuum approach to prove results about
the stability of the synchrony and traveling wave solutions of (1.65) (Bressloff
and Coombes 1997; Crook et al. 1997; Ermentrout 1985, 1992). For example,
Crook et al. (1997) were able to prove that presence of axonal delay in synaptic
transmission between neurons can cause the onset of traveling wave solutions. This
is due to the presence of axonal delay which encourages larger phase shifts between
neurons that are further apart in space. Similarly, Bressloff and Coombes (1997)
derived the continuum phase model for a network of integrate-and-fire neurons
coupled with excitatory synapses on their passive dendrites. Using this model, they
were able to show that long range excitatory coupling can cause the system to
undergo a bifurcation from the synchronous state to traveling oscillatory waves. For
a rigorous mathematical treatment of the existence and stability results for general
continuum and discrete phase model neuronal networks, we direct the reader to
Ermentrout (1992).

8 Summary

e The infinitesimal PRC (iPRC) of a neuron measures its sensitivity to infinitesi-
mally small perturbations at every point along its cycle.

e The theory of weak coupling utilizes the iPRC to reduce the complexity of
neuronal network to consideration of a single phase variable for every neuron.

e The theory is valid only when the perturbations to the neuron, from coupling or
an external source, is sufficiently “weak” so that the neuron’s intrinsic dynamics
dominate the influence of the coupling. This implies that coupling does not cause
the neuron’s firing period to differ greatly from its unperturbed cycle.
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* For two weakly coupled neurons, the theory allows one to reduce the dynamics to
consideration of a single equation describing how the phase difference of the two
oscillators changes in time. This allows for the prediction of the phase-locking
behavior of the cell pair through simple analysis of the phase difference equation.

e The theory of weak coupling can be extended to incorporate effects from weak
heterogeneity and weak noise.
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