Now, fora > 1,

Therefore,
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/af(x)dx <0
1

a 1 a 1
/ fx)dx =/ fx)dx +f fx)dx </ fx)dx (6.3)
0 0 1 0

|
<0

Combining (6.2) and (6.3) shows that

foralla > 0and a # 1. Hence, a =

a 1
f F)dx < / £ dx
0 0

1 maximizes the integral f;' (1 - x2) dx. n

t Section 6.1 Problems. oo ’

m6.1.1

1. Approximate the area under the parabola y=x?from0to 1,
using four equal subintervals with left endpoints.

2. Approximate the area under the parabola y=x*from0to1
using five equal subintervals with midpoints.

3. Approximate the area under the parabola y = x2 from Q to 1
using four equal subintervals with right endpoints.
4. Approximate the area under the parabolay = 1 —x? from O to

1, using five equal subintervals with (a) left endpoints and (b) right
endpoints.

]

y

In Problems 5-14, write each sum in expanded form,

4 s

5 }:JE 6. Z(k— 1)?
k=1 k=3
b . 3 k2

A };3 8. §P-ﬁ

9, Z(r+1)" 10. tk*

k=0 k=0

n

1. Z(_nkﬂ 12. ) fc)dn
k=0

k=1
kN1 d T\
13, ;(r—z) - 14, ;cos (k;) ~

In Problems 15-22, write each sum in sigma notation.
15 244 4+6+8+... 42

6, L L, L
Viove 3 s

17. In2+1n3+Ind+1ns

8 3 4+5+6+z
"3%% 89
I 1 2 3
9 - 445,02
Tits Tt
201+1+1+l+ 1+ 42
172 478"16 2

2 1+9+ ¢+ +q* + ..+ ¢!
2. 1-a+a-d+a* -a°+ ... 4 (=1)q"

In Problems 23-30, use the algebraic rules for sums to evaluate each

sum. Recall that
Z k= n(n + 1)

k=1
and
n

Zkz _nr+1H2n+1)
k=1 6

s
24, 2(4 -k
k=1

n

25, Zk(k +1) 26. Z4k

k=0 k=1

27, Z 4k - 1)? 28, Z(k +2)k - 2)
k=1

k=1
10
30. Z(—l)"
k=0

10
29, Z(—l)"
k=1

31. The steps that follow will show that

15
23, Z(Zk +3)

Zkz nn+ 1)(2n +1)

(a) Show that

DA+ —K1=@ = 1) + (3 =2 + (@ - )
- +o () - )
=1+n’ -1

(Sums that “collapse” like this due to cancellation of terms are
called telescoping or collapsing sums.)

(b) Use Example 3 and the algebraic rules for sums to show that

Z[(l TR k] =33k 43

k=1

nin + 1)

s

i




292 Chapter 6 & Integration

(c) In (a) and (b), we found two expressions for the sum
n
3+ k- K
k=1
Those two expressions are therefore equal; that is,
< 1
a +n)3—13=32k2+3&2i—) +n
k=1

Solve this equation for }_;_, k%, and show that

ikz__ n(n +1)2n +1)
D

k=1

2 6.1.2
32. Approximate

1
f (1 - xYdx
-1

using five equal subintervals and left endpoints.
33. Approximate
1
/ (1 —xY)dx
-1
using five equal subintervals and midpoints.
34. Approximate
1
/ (2 +xY)dx
-1

using five equal subintervals and right endpoints.
35. Approximate

2
f 2+ x%)dx
-2

using four equal subintervals and left endpoints.
36. Approximate
2
/ e*dx
-1

using three equal subintervals and midpoints.

37, Approximate
3n/2
/ sinxdx
0

using three equal subintervals and right endpoints. .
38. (a) Assume thata > 0.Evaluate [’ x dx, using the fact that

the region bounded by y = x and the x-axis between O to a is a
triangle. (See Figure 6.23.)

y x

/

0 .
0 a

-

Figure 6.23 The region for Problem 38.

(b) Assume that a > 0. Evaluate _/;)“xdx by approximating

the region bounded by y = x and the x-axis from 0 to a
with rectangles. Use equal subintervals and take right endpoints.
(Hint: Use the result in Example 3 to evaluate the sum of the areas
of the rectangles.)

39. Assume that0 < a < b < o0o. Use a geometric argument to

show that
b 2 _ 2
b ~a
dx =
/a xdx 3

40. Assume that0 < a < b < co. Use a geometric argument and
Example 1 to show that

b 3_ .3
b —a

2dx =

/a-xx 3

Express the limits in Problems 41-47 as deﬁn ite integrals. Note that
(1) P = [xo,x1,...,x,] is a partition of the indicated interval,
(2) ¢ € [y, i), and (3) Axy = x4 — x4y

n

41. lim Z 2c,f Axy, where P is a partition of [1, 2]
1PI—0 0y ‘

n
42. lim Z /€ Axy, where P is a partition of {1, 4]
1210 %=1

n

4. lim Y (2ce — 1)Ax;, where P is a partition of [~3, 2]
[1PI—0 ¥y
n
4. lim Ax,, where P is a partition of [1, 2]

ner-0 ey G + 1

45, tim 3 &L

Axg, where P is a partition of 2, 3
1Py—0 £t €x +2 * P (2.3]

n
46. lim Z(sin c¢) Axi, where P is a partition of [0, 7]
1PI—0 35

n
47. lim Z e* Ax,, where Pisa partition of [-5, 2]
I1PI—0 x=y

In Problems 48-53, express the definite integrals as limits of
Riemann sums.

-1 2

X
48. ——d
,/:2 1+x2 *

3 e ” ZX
50, f e ¥ dx 51, f Inxdx 52, [ cos — dx
1 1 0 b1 g

]
49, f x+ DVdx
2

5
53. / g(x) dx, where g(x) is a continuous function on [0, 5}
o

In Problems 54-60, use a graph to interpret the definite integral in
terms of areas. Do not compute the integrals.

3 2

54, / @x + 1) dx 55, / (x = 1) dx
0 -1
5

2
56./ ~xdx 57. / e *dx
22 A

n ' 4
58, [ cosxdx 59, / Inxdx
- 1

2
2 1
60, | - p
0'/:3( zt)dr




In Problems 6167, use an area formula from geometry to find the
value of each integral by interpreting it as the (signed) area under
the graph of an appropriately chosen function.

3 3
61, f |x| dx 62. / V9 — x?dx
-2 -3
M 1 1
63. f (—x - 4) dx 64. V1—x2dx
2 \2 172
2 1
65. / (V4 —x2-2)dx 66. / V2—-xtdx
-2 0
)
67, / 4 -9 - xVdx
-3

16.1.3
68. Given that

4 1
2d = -g¢°
‘/0 X" dax 30

evaluate the following:

) / = d
(a X X
(c) / 3 x d‘r

3
(®) / (x +1)* dx
-2

-2
(b) f 3x%dx
-3
1
[C)) / 3x%dx
1
4.
® f (x = 2)*dx
2
2 -3 2
59. Find / cos(3x) dx. 70. Find / e 2 gx.
2 -3
2 xJ 5
71. Find f —dx. 72. Find / 2x3dx.
2 3 »
1

13. Find/ tanx dx.
1

'd. Explain geometrically why

2 2 1
/ x%dx = / xtdx —/ x*dx (6.4)
1 (i 0
ind show that (6.4) can be written as
2 0 2
/ xtdx = f xdx +/ x2dx (6.5)
1 1 0

telate (6.5) to addition property (5).
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In Problems 75-79, verify each inequality without evaluating the

integrals,
2 2
76./xdx5/ xdx
1 1

1 1
75./xdx2/ x2dx
0 0
4 1 1 .
77.05fﬁdx58 78.55/\/1—x2dx51
0 0 :

Sn/6 2
7. T 5/ sinxdx < idd
3 w16 3

80. Find the value of ¢ > 0 that maximizes Jo 4 = x¥) dx.

81.

(=4

Find the value of g € [0, 27} that maximizes j;' cosxdx.

82. Finda € (0, 27] such that

a
/ sinxdx =0
0

83. Finda > 1 such that
/ (x—2Pdx =0
1

84. Find a > 0 such that

/a(l-—lxl)dx=0

85, To determine age-specific mortality, a group of individuals,
all born at the same time, is followed over time. If N (1) denotes
the number still alive at time t, then N(t)/N(0) is the fraction
surviving at time f. The quantity r(t), called the hazard rate
function, measures the rate at which individuals die at time t;
that is, 7 (¢) drt is the probability that an individual who is alive at
time ¢ dies during the infinitesimal time interval (¢, f + dt). The
cumulative hazard during the time interval [0, ], jg r(s)ds,canbe

estimated as — In 8. Show that the cumulative hazard during the

time interval [¢, t+1], f,'+1 r(s) ds, can be estimated as — In i,f,'(—‘:)‘l

1 6.2 The Fundamental Theorem of Calculus

In Section 6.1, we used the definition of definite integrals to compute [y x2dx. This

required the summation of a large number of terms, which was facilitated by the
explicit summation formula for > k=1 k% Fermat and others were able to carry out
similar calculations for the area under curves of the form y = x", where r was a
rational number different from —1, The solution to the case r = —1 was found by the
Belgian mathematician Gregory of St. Vincent (1584~1667) and published in 1647, At
that time, it seemed that methods specific to a given function needed to be developed
to compute the area under the curve of that function. Such methods would not have

been practical.

This relationship is not at all obvious; among the first to notice it were Isaac Barrow
(1630-1677) and James Gregory (1638-1675). Each presented the relationship in
geometrical terms, without realizing the importance of his discovery.




 Section 6.2 Problems.

a6.21
In Problems 1-14, find g{-.

X
1. y=/ 2u’du
0

3 y=/0-x(4u2—~3)du
S. y=/0xmm¢.x>0
6. y=/‘x\/1—+_ﬁdu.x>0
0
='/(;x‘/l+sin2udu,x>0
=/0‘x,/2+csc2udu,x>0

X
9. y=f ue™ du 10.
3

1
1. y = du, -2
y /:2u+3 u, x>

——d
..12"}'“2 “

h 4
13. y=/ sin(@? + 1)du 14,
/2

L
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-2 -1

Figure 6.26 The graphof y = 7 between r =

—2and

x =1, The function is dnsconunuous atx =0,

X u4
2. y=/ (1 — =)du
0 2

4, y=f 3+ uydu
o

. X
y=f ue ™ du
1

y =/ cos’(u — 3) du
n/4

In Problems 15-38, use Leibniz’s rule 1o find 5 -’-

3 5
25, y=/ (L+1)de 26. y=/ (1+é)de

3 6
27. y=/ (1 +sint) de 28. y=/ (1 +tant)d:
2 pre

51 3 1
29. y=/; ;—idu,x>0 30. y=[2mdt,,t>0

1
31. y=/ sectdt, -1 <x <1
2

2 2
n y=f cott dt 3. y=/ 1+DHdt
2+x2 k3

+x

X n

3. y=/ tanudu, 0 <x < =

- 4
3

3s. y=/ In(t - 3)dt,x > 0
2
'.\-‘

36. y=/ In(l+1)de,x >0
x3

453 -2x
37. y=/ sint dt 38, y=/ costdt
252 I+

2
» 6.2.2
In Problems 39-9¢, compute the indefinite integrals.

39, /(1+3x2)dx 40, /(x —4)dx

41, /(Sx - E.t)dx

42, f(4x3 + 529 dx

p2 28 l
Is. y.../ 1+ de 16. y=f (& - 2)dt
0

1-4x Ax42
17. y=/ (22 + D de 18, y=/ 1+ de
0 [+]

2.2
V3+udu,x >0

2
x4
22,y -_-/ e+ e dt
0

inx
/ e'dt,x >0
2

x4
19, y:/ Vidtx>0 20, y=
4

3x

A y=f (1+e)dt
0

3x4x
3.y =f (I+1)dr 24 y =
1

1 1
43, ~x? -
/(Zx + 3x 3) dx

2xt — x
48, d
f Jx

47. /xzﬁdx

49, / (7?4 My g

51, /(\/,?-}- %) dx
53

(x - )(x + 1) dx

44, f(1x5+2x-‘~1) dx
4. /x +3x

48, f(l+x')\/;dx

50. /(X"/S + "y dx

!
1/3
52, /(3.: +3x'/3) dx

54, /(.t —1)2dx
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5. f(x —-2)3—-x)dx
57. / €™ dx

59, / 3e " dx

61 /xe“"z/‘zdx

63. f sin(2x) dx

65.

wm

/ cos(3x)dx

67. / sec?(3x) dx
69. f 22X s
1 —sin*x

71, f tan(2x) dx

7. f (sec? x + tanx)dx

4
7s. d
5 ./1-§-x2 *

77.[ 1 dx
V1-2x2
79] 1 dx
) ox+2
81./2x—1dx
3x
x+3
83./x2_9dx

3—x
85. fx2—9dx

5x?
87. fmdx

89, /3‘ dx

9L /3‘2" dx

93, /(xz +25)dx
95, / (VX + Ve ) dx

m 6.2.3

56. / (2x +3)%dx
58, _/‘2e3’r dx

60. f 2e 3 dx

62. fe"(l —e Fdx
64, fsin ! -;x dx
66. /cos 2 -54x dx

68, / csc*(2x) dx

70, [ =25 gx
1 —cos‘x

72. f cot(3x)dx

74, f(cotx —csc? x)dx

X2
76. - d
6 /(1 1+x2) X
78/ 3 dx

) J1—=x2

80./ _3dx

x
82, /2x+5dx

x

84. /X—Z;%édx

86. f;i:—:ilcgdx
2

88, /Tzf;dx

90. /2"(11

92. /4"‘dx

94. -/‘(x'3 +3%)dx

96. /(%+%) dx

In Problems 97-122, evaluate the definite integrals.

4
97. f (B -2)dx
2

3
98, f 2x* - 1)dx
-1

B 6.3 Applications of Integration

In this section, we will discuss a number of applications of integrals. In the first
application, we will revisit the interpretation of integrals as areas; the second
application interprets integrals as cumulative (or net) change; the third will allow |
us to compute averages using integrals; and, finally, we will use integrals to compute 4
volumes. In each application, you will see that integrals can be interpreted as “sums

1 )
99, / (3 —x"dx
0
8
101. / x~¥ gx
1
2
103. / 2t - 1)t +3)dt
1)
/4
108. f sin(2x) dx
0
n/8 -
107. f sec?(2x) dx
0

LI |
109, —
/; T2 dx

1/2 1
111 / dx
0

Vi—2x?

n/6
113. / tan{2x) dx
0

0
115. f e dx
-1

e 3 1
119. / —dx 120. f —dz
1 X 2 Z+1
~1 1 3 2 i
121, / du 122, | ——ds |
2 1—-u , t—1 ;
123. Use I'Hospital’s rule to compute
¥
1 r 1
lim— | sinrde !
=0 X% Jo
124. Use I'Hospital’s rule to compute
1 k
lim— | e'dx
h-+0 0

125. Suppose that

fx F(&)dt =2x?
0

Find f(x).
126. Suppose that

/x f®)ydt = ltan(2Jc)
0 2

Find f(x).

of many small increments.”

2
100. / S dx
1

Y1+
102./ dx
PRV

2
104. / 2+3)%dr
-1

n/3 x
106. / 2cos (—-) dx
-n/3 2

n/4
108. f tanxdx
-n/4

~1 4
110. / —dx
Sl x2

172 2
112, / dx
-172 /1 —x2

n/15

114, - sec(5x) tan(5x)dx

n/20 '

2
116. f 2e’ dt
0

1
118, / e Plds
-1




EXAMPLE 13

Solution

6.3 W Applications of Integration 321

POrTen

Set up, but do not evaluate, the length of the curve of the hyperbola f(x) =
betweena = 1 and b = 2. ,

To determine the length of the curve, we need to find f’(x) first.

I
f'(x) =-3

Then the length of the curve is given by the integral

2 1 2 2 1
L=/ 1+(——2-) dx:/"/1+—4dx ]
1 X 1 X

The antiderivative of the integrand in Example 13 is quite complicated, and
we will not be able to find it with the techniques available in this text. In Section
7.5, we will learn numerical methods for evaluating integrals, and some of these

software packages that can numerically evaluate such integrals. Using either of

these approaches on the integral in Example 13, we would find that the length £,
is approximately 1.13.

Section 6.3 Prohlems
% 6.3.1

Find the areas of the regions bounded by the lines and curves in

Problems 1-12.

(a) Find N(¢) by solving the initial-value problem.

(b) Compute the cumulative change in population size between
t=0and: =35,

=2 = Lo . L
Ly=x 2‘ hy=x+2 ) (c) Express the cumulative change in population size between
Ly=ul-ly=2~-x time 0 and time ¢ as an integral. Give a geometric interpretation
Ly=ely=—x,x=0x=2 of this quantity,
n
4 y=cosx,y=1,x=0x= 7 18, Suppose that a change in biomass B(t) at time ¢ during the
, | .
S y=xt4ly=dr—2 (in the first quadrant) interval [0, 12] follows the equation
6. y=x y=2—1x,y=0(n the first quadrant) d x
1 — B(t) = cos (—t)
7. y=x%y= =,y =4(in the first quadrant) dt 6
X
b 4

8.y=sinx,y=cosxfromx=0tox=2— for0 <t <12,
) n (a) Graph 42 as a function of 1.
L y=sinx,y=1fromx =0tox = —- . .

Y =sinx,y 2 (b) Suppose that B(0) = B, Express the cumulative change in
0. y=x%y=(x-202 y=0fromx =0tox =2 biomass during the interval [0, 1] as an integral. Give a geometric
IL y=x%y=xfromx =0tox =2 interpretation. What is the value of the biomass at the end of the
2 y=e* y=x+1fromx=-—1 tox =1 interval [0, 12] compared with the value at time 07 How are these

In Problems 13-
lines and curves

with respect to y.
13._v=x2,y=(x—2)2,y=0fromx=0tox=2 )
M y=xyr=1y= 3 (in the first quadrant) VO =~ -2 +1

18,

X—‘-()‘-l)2+3,x=1-—(y—1)2fromy=0toy=2(in

the first quadrant)

16, x:(y—l)z-l,x=(y—-l)2+1fromy=0toy=2

16.3.2

.
lynamics are gi

Consider a papulation whose size at time ¢ is ¥ (r) and whose
ven by the initial-value problem

dN

dt

-1

vith N(0) = 100.

16, find the areas of the regions bounded by the
by expressing x as a function of y and integrating

two quantities related to the cumulative change in the biomass
during the interval [0, 12]?

19. A particle moves along the x-axis with velocity

for0 < ¢ < 5. Assume that the particle is at the origin at time 0.
(a) Graph v(¢) as a function of ¢

(b) Use the graph of v(f) to determine when the particle moves
to the left and when it moves to the right.

(¢) Find the location 5(2) of the particle at time ¢ for 0<t<5s.
Give a geometric interpretation of s(t) in terms of the graph of

v(t).

(d) Graph s5(r) and find the leftmost and rightmost positions of
the particle,

atae

e s

5. I s S

P e
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20. Recall that the acceleration a(¢) of a particle moving along
a straight line is the instantaneous rate of change of the velocity
v(r); that is,

d
t) = —u(t
a(t) T v(r)
Assume that a(t) = 32 ft/s% Express the cumulative change

in velocity during the interval [0, t] as a definite integral, and
compute the integral.

2L If % represents the growth rate of an organism at time ¢
(measured in months), explain what

Tdl
—dt
_/2‘ dt
represents.

22, If %":—’ represents the rate of change of the weight of an
organism of age x, explain what

S dw
—d
3 dX *

means.
23. If ‘—’ﬁ represents the rate of change of biomass at time ,

explain what
®dB
— dt
,/1- dr

24. Let N(¢) denote the size of a population at time ¢, and assume
that

means.

dN

—_— = t

ar £
Express the cumulative change of the population size in the
interval [0, 3] as an integral.

2 6.3.3
28, Let f(x) =x% -2, Compute the average value of f(x) over
the interval [0, 2].
26. Let g(1) = sin(rrr). Compute the average value of g(t) over
the interval {—1, 1].
27. Suppose that the temperature T (measured in degrees
Fahrenheit) in a growing chamber varies over a 24-hour period
according to
L

T{t) = 68 +sin (12!)
for0 <t <24,
(a) Graph the temperature T as a function of time ¢.
(b) Find the average temperature and explain your answer
graphically.
28. Suppose that the concentration (measured in gm™) of
nitrogen in the soil along a transect in moist tundra yields data
points that follow a straight line with equation

y =673.8 - 34.7x

for 0 < x < 10, where x is the distance to the beginning of the
transect. What is the average concentration of nitrogen in the soil
along this transect?

29. Let f(x) = tanx. Give a geometric argument to explain why
the average value of f(x) over [1, 1] is equal to 0.

30. Suppose that you drive from St. Paul to Duluth and you
average 50 mph, Explain why there must be a time during your
trip at which your speed is exactly 50 mph.

31, Let f(x) = 2x,0 < x < 2. Use a geometric argument to find
the average value of f over the interval [0, 2], and find x such that
S (x) is equal to this average value.

32. A particle moves along the x-axis with velocity
vy = —(t -3 +5
for0<t <é6.
(a) Graph v(r) as a function of t for 0 < ¢ < 6.
(b) Find the average velocity of this particle during the interval
(0, 6].

(¢} Find atime ¢* € [0, 6] such that the velocity at time ¢* is equal
to the average velocity during the interval [0, 6]. Is it clear that
such a point exists? s there more than one such point in this case?
Use your graph in (a) to explain how you would find ¢* graphically.

» 634

33. Find the volume of a right circular cone with base radius r and
height h.

34. Find the volume of a pyramid with square base of side length
a and height A.

In Problems 35-40, find the volumes of the solids obtained by
rotating the region bounded by the given curves about the x-axis,
In each case, sketch the region and a typical disk element.

35. y =4 —x2,y =0, x = 0 (in the first quadrant)
36.y=\/2—x,y=0,x=2

37. y=sinx,0<x<m,y=0

8. y=e',y=0,x=0,x=1In2

39, y=secx,—-§-§x5£,y=0

3
0. y=/1-x2,0<x<1,y=0
In Problems 41-46, find the volumes of the solids obtained by
rotating the region bounded by the given curves about the x-axis,
In each case, sketch the region together with a typical disk element,
ah y=x2y=x0<x<1
2. y=2-x'y=2+x%0<x<1
B y=e",y=e*0<x<2
4. y=/1-x% y=1x=1((in the first quadrant)

45. y = Jeosx,y=1,x = 7_2r_

1
46. y = Tx= 0,y =1, y =2 (in the first quadrant)

In Problems 47-52, find the volumes of the solids obtained by
rotating the region bounded by the given curves about the y-axis.
In each case, sketch the region together with a typical disk element.

47. y=ﬁ,y=2,x=0
48. y = x?, y = 4,x = 0 (in the first quadrant)
499, y=Inx+1),y=In3,x=0

50 y=x,y=x,0<x<1

SLy=xy=x,0<x<1
! 1
52, y=;,x=0,y=§,y=1
X 6.3.5
53. Find the length of the straight line
y =2

from x = 0to x = 2 by each of the following methods:
(a) planar geometry
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(b) the integral formula for the lengths of curves, derived in  In Problems 59-62, set up, but do not evaluate, the integrals for the

Subsection 6.3.5 lengths of the following curves:
54. Find the length of the straight line 59. y=x?-1<x<1
y =mx 60.y=sinx,05x512r-

fromx = Oto x = a, where m and a are positive constants, by
each of the following methods: _
(a) planar geometry 62. y‘—- Inx,l<x<e ‘

(b) the integral formula for the lengths of curves, derived in  63. Find the length of the quarter-circle
Subsection 6.3.5

6L y=¢e*0<x<1

55. Find the length of the curve y=y1-x?
yl=x for0 < x < 1, by each of the following methods:
fromx=1ltox =4 ' (a) aformula from geometry
§6. Find the length of the curve (b) the integral formula from Subsection 6.3.5
2y = 353 64. A cable that hangs between two poles at x = —M and x = M

takes the shape of a catenary, with equation
fromx =0tox = 1.

57. Find the length of the curve y= %( " + )

2 1
y= 6 + 2x where a is a positive constant. Compute the length of the cable
whena =1and M = In2.
fromx =1tox =3. 65. Show that if
58. Find the length of the curve » Show that1 & 4 e
e
* 1 f(x)= 3
=T TEe
then the length of the curve f(x) between x = 0 and x = a for
fromx =2tox = 4. any a > 0 is given by f'(a).
Chapter 6 Key Terms
Discuss the following definitions and 9. The constant-value and 16. Evaluating definite integrals by using
concepts: constant-multiple rules for integrals the FTC, part 11
1. Area 10. The definite integral over a union of 17. Computing the area between curves
2. Summation notation intervals by using definite integrals
3. Algebraic rules for sums 11 Comparison rules for definite 18. Cumulative change and definite
ition of an i 1and th integrals integrals
4 A partmon'o' an interval and the 19. The mean-value theorem for definite
norm of a partition 12. The fundamental theorem of integral
; calculus, part I cgra’s
§. Riemann sum o ) 20. The volume of a solid and definite
6. Definite integral 13. Leibniz’s rule integrals
7. Riemann integrable 14, Antiderivatives 21. Rectification of curves
8. Geometric interpretation of definite 15. The fundamental theorem of 22. Length of a curve
integrals calculus, part I1 23. Arc length differential

iChaptes & Review Prohlems:

1. Discharge of a River In studying the flow of water in an open
channel, such as a river in its bed, the amount of water passing -
through a cross section per second—the discharge (Q)—is of
interest. The following formula is used to compute the discharge:

8
=/ 3 6.18 .
0 fo v(b)h(b) db ©18) " Figure 6.48 The river for Problem 1.
In this formula, b is the distance from one bank of the river to the To evaluate the integral in (6.18), we would need to know
point where the depth k(b) of the river and the average velocity v(b) and h(b) at every location b along the cross section. In
(b) of the vertical velocity profile of the river at b were measured. practice, the cross section is divided into a finite number of
The total width of the cross section is 8. (See Figure 6.48.) subintervals and measurements of ¥ and 4 are taken at, say, the
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right endpoints of each subinterval. The following table contains
an example of such measurements:

Location h v
0 0 0
1 0.28 0172
3 0.76 0.213
5 © 134 0.230
7 1.57 0.256
9 1.42 0.241
11 121 0.206
13 0.83 0.187
15 0.42 0.116
16 0 0

The location 0 corresponds to the left bank, and the location
B = 16 to the right bank, of the river. The units of the location
and of 4 are meters, and of ¥, meters per second. Approximate
the integral in (6.18) by a Riemann sum, using the locations in the
table, and find the approximate discharge, using the data from the
table.

2. Biomass Growth Suppose that you grow plants in several
study plots and wish to measure the response of total biomass
to the treatment in each plot. One way to measure this response
would be to determine the average specific growth rate of the
biomass for each plot over the course of the growing season.

We denote by B(1) the biomass in a given plot at time 7. Then
the specific growth rate of the biomass at time ¢ is given by

1 dB
B(t) dt

1 /' 1 dB(s)
- — ds
t Jo B(S) ds

is a way to express the average specific growth rate over the
interval {0, 7].
(b) Use the chain rule to show that
1 dB

B(t) dt
(c) Use the resultsin (a) and (b) to show that the average specific
growth rate of B(s) over the interval [0, ¢] is given by

B(1)

11d 1

(a) Explain why

d
E(ln B(1)

provided that B(s) > 0 for s € [0, ¢].
(d) Explain the measurements that you would need to take if you

wanted to determine the average specific growth rate of biomass
in a given plot over the interval [0, t].

Problems 3-6 discuss siream speed profiles and provide a
Justification for the two measurement methods described next.
(Adapted from Herschy, 1995) The speed of water in a channel
varies considerably with depth. Due to friction, the speed reaches
zero at the bottom and along the sides of the channel. The speed
is greatest near the surface of the stream. To find the average
speed for the vertical speed profile, two methods are frequently
employed in practice:

1. The 0.6 depth method: The speed is measured at 0.6 of the

depth from the surface, and this value is taken as the average
speed.

2, The 0.2 and 0.8 depth method: The speed is measured at 0.2
and 0.8 of the depth from the surface, and the average of the two
readings is taken as the average speed.

The theoretical speed distribution of water flowing in an open
channel is given approximately by

_ /e f
o(d) = (P_aﬂ) 6.19) |

where v(d) is the speed at depth d below the water surface, ¢ is a
constant varying from 5 for coarse beds to 7 for smooth beds, D is
the total depth of the channel, and a is a constant that is equal to
the distance above the bottom of the channel at which the speed
has unit value.

3. (8) Sketch the graph of v(d) as a function of d for D = 3 m
anda = 1 mfor (i) c = 5 and (ii) c = 7.

(b) Show that the speed is equal to 0 at the bottom (d = D) and
is maximal at the surface (d = 0).

4. (a) Show by integration that the average speed ¥ in the vertical

profile is given by
¢ (D\'
7= =
c+1(a)

(b) What fraction of the maximum speed is the average speed 77
(c) If you knew that the maximum speed occurred at the surface
of the river [as predicted in the approximate formula for v(d)],
how could you find 7? (In practice, the maximum speed may occur
quite a bit below the surface due to friction between the water
on the surface and the atmosphere. Therefore, the speed at the
surface would not be an accurate measure of the maximum speed.)
S. Explain why the depth d;, at which v ='T, is given by the

equation ,
- Ve 4
7= (D d‘) 621) |

a
We can find d; by equating (6.20) and (6.21). Show that

él=1_ ¢ )c ]
D c+1

and that d,/ D is approximately 0.6 for values of ¢ between 5 and
7, thus resulting in the rule

(6.20)

TR vy

where vy is the speed at depth 0.6 D. (Hint: Graph1—(c/(c+1))*
as a function of ¢ for ¢ € {5, 7], and investigate the range of this
function.)

6. We denote by vy, the speed at depth 0.2D. We will now find
the depth dj such that

U= %(vo.z + vg,) 3

(a) Show that d, satisfies

1 (D - o.zo)"‘+ (D -dz)l/c _c (D)"°
2 a a T c+1\a
[Hint: Use (6.19) and (6.20).]

(b) Show that

dz 2¢ ¢
—=1- ~ (0.8)'/°
[c+l 08 ]

and confirm that d,/ D is approximately 0.8 for values of ¢ between -
5 and 7, thus resulting in the rule '

=l
U~ 3(voz + vos)




