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Figure 7.6 The region corresponding to the definite
integral in Example 10.

Therefore,

) 62 6
f dx=f —du=2Inul]; =2(In6 —In1) =21In6 n
4 x—3 1 U

We can easily spend a great deal of time on integration techniques. The problems
can get very involved, and to solve them all, we would need a big bag full of tricks.
There are excellent software programs (such as Mathematica and MATLAB®) that
can integrate symbolically. These programs do not render integration techniques
useless; in fact, they use them. Understanding the basic techniques conceptually and
being able to apply them in simple situations makes such software packages less of a
“black box.” Nevertheless, their availability has made it less important to acquire a
large number of tricks.

So far, we have learned only one technique: substitution. Unless you can
immediately recognize an antiderivative, substitution is the only method you can try
at this point.

As we proceed, you will learn other techniques. An additional complication will
then be to recognize which technique to use. If you don’t see right away what to do,
just try something. Don’t always expect the first attempt to succeed. With practice,
you will see much more quickly whether or not your approach will succeed. If your
attempt does not seem to work, try to determine the reason. That way, failed attempts
can be quite useful for gaining experience in integration.

} Section 7.1 Problems

1711

In Problems I-16, evaluate the indefinite integral by making the

given substitution.

L f2x/F—+-—3dx.withu =x2+3
2, /sz\/;mdx,withu =x3+1
3 f3x(1 —x) P dx, withu =1 — x?
4. /4x3(4+x“)‘/3 dx, withu = 4 + x*

5. /5cos(3x)dx. with u == 3x

6. szin(l - 2x)dx,withu =1 —2x
7. /7x2 sin(dx®) dx, with u = 4x3

8. fxcos(xz —1)dx, withu = x? -1
9. fe““ dx, withu = 2x + 3

10. ./‘?ae"x dx,withu =1~ x

11. f xe™ P dx, with u = —x2/2

12. /xe"’"2 dx, withu = 1 — 3x2

.
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x +

xX+2
1. fxz + 4x
2x
14. fS—-xz
3x
i5. /x+4
X
16. /5

- X

dx, withy = x* +4x

dx,withu =3 —x?

dx,withu=x+4

dx,withu=5-x

In Problems 17-36, use substitution to evaluate the indefinite
integrals.

17. f vx+3dx

19, f(4x -3y =3x +2dx

18. / @-x0)""dx

20. / (% = 20 = 3x% + 3 dx

-1
x=3x+1

» [t
w22
S

21/ =l
" 1+dx 22

2x
3 d
B f 14 2x2 *

25, f 3xe” dx

dx

cos xe™™* dx

27. f—i—cscz(lnx)dx

3
29, fsin (%x + %) dx

31 f tan x sec? x dx

2
33 /‘(lnx) dx
X

35, ij\/5+x2dx

28, / sec? xe'™* dx
30. fcos(Zx - 1)dx

32. / sin’ x cos x dx

dx

3. _/(x—3)ln(x-—3)

36. /,/1+lnx!l:—x- dx

In Problems 37-42, a, b, and ¢ are constants and g(x) is a
continuous function whose derivative g'(x) is also continuous. Use
substitution to evaluate the indefinite integrals.

2ax + b /‘ 1
. —es 38. dx
5 [ ax? + bx +cdx ax+b

39. /gl(x)[g(X)]" dx 40. fg'(x)sin[g(x)]dx

g'(x)

/ ~glx) —_—
41. fg (x)e dx 42. GO +1

2712

In Problems 43-58, use substitution to evaluate the definite
integrals.

3
43, f xV/xt+ldx
/‘ 2x+3
(x2+3x)’

47, f (x = e~V gy 48,
2

2
44, f x5vx? +2dx
1

: 2x
Y .S}
6 _/0 @xt+ 38

n? P

—_d
e @ -3t

/3 /6
49, f sinx cosx dx 50, / sin® x cosx dx
0 -

/6

n/4 /3 o
51, f tan x sec’ x dx 52, / sm2x dx
0 0 Ccos‘x
9 2
53. f S dx 54. / o dx
s x—3 0 X+2

2
xdx

f! dX 56 2
*J. x(nx)? S e+ Dinx2+1)

9 1 2 -
57. f —e Y dx 58. f x4 — xtdx
1 \/— 0

x
59, Use the fact that

to evaluate

/cotxdx

A 7.2 Integration by Parts and Practicing Integration
32 7.2.1 Integration by Parts

As mentioned at the beginning of this chapter, integration by parts is the product

rule in integral form. Let 4 = u(x) and v = v(x) be differentiable functions. Then,
differentiating with respect to x yields

or, after rearranging,

wv) =u'v+uv

uv = (uv) —u'v

Integrating both sides with respect to x, we find that

/uv'dx =/(uv)'dx - /u’vdx N

Since uv is an antiderivative of (1v)’, it follows that

/(uv)’d.t =uv+C
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Combining our results, we find that

Note that we used the same symbol C to denote the integration constants. We could
have called them C, and C; and then combined them into C = Cy + Cp, but since
they stand for arbitrary constants, we need not keep track of how they are relatgd
ly capture them all by the same symbol. However, we should keep In
mind that they are not all the same. ]

and can simp

Section 7.2 Problems

2 7.21

In Problems 1-30, use integration by parts to evaluate the integrals.

1. fxcosxdx 2. f3xcosxdx

3 fo cos(3x — 1)dx 4, f 3x cos(4 — x)dx

5. f 2x sin(x — 1) dx

7. fxe‘ dx
9, fxze" dx

11 fxlnx dx

6. fxsin(l —2x)dx
8. f3xe"‘/2dx
10. f 2x%e™* dx
12. flenxdx
13. f xIn(3x) dx 14, f <2inx?dx
18, fxsec’xdx 16. fxcsczxdx

n/3
17.f xsinxdx
0
2
19. f Inxdx
1

4
21, f In/xdx
1

1
23. / xe *dx
[}

n/3
25. f e* sinx dx
0

27, f e cos(g—x) dx

29. f sin(lnx) dx

n/4
18.[ 2x cosx dx
0
3
20. [ Inx?dx
1
4
22. f JxInxdx
1
3
24, f xte *dx
1]
n/6
26./ e* cos x dx

0
28. | e sin (%) dx

30. / cos(Inx)dx

31. Evaluating the integral

[ cos’ xdx

requires two steps.

* 2 n(x!2e) dx = %fx”z Inxdx +fx3/2dx

1 2 2
= §x3/2 (lnx - 3) + -5'x5/2'+ Cc

First, write
cos? x = (cos x)(cos x)

and integrate by parts to show that
f cos? x dx = sinxcosx + f sin x dx

Then, use sin® x + cos”x = 1 to replace sin? x in the integral on
the right-hand side, and complete the integration of [ cos® x dx.

32, Evaluating the integral

f sin? x dx

sin? x = (sinx)(sinx)

requires two steps.
First, write

and integrate by parts to show that

fsinzxdx =—sinxcosx+fcos2xdx

Then, use sin® x + cos’x = 1 to replace cos® x in the integral on 4
the right-hand side, and complete the integration of [ sin® x dx.

33, Evaluating the integral
f arcsin x dx

requires two steps.
(a) Write
arcsinx = 1. arcsinx

and integrate by parts once to show that

X

Ve

dx

f arcsinx dx = x arcsinx — f

(b) Use substitution to compute

[ ol dx
1—x2

and combine your result in () with (7.7) to complete the §
computation of [ arcsin x dx. 4

o |
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34, Evaluating the integral
/ arccosx dx |

requires two steps.
(a) Write
arccosx = 1 - arccos x

and integrate by parts once to show that

x
/ arccos x dx = x arccos x + f ———dx
J1-x2

(b) Use substitution to compute

(7.8)

/ X dx
J1—x2

and combine your result in (é) with (7.8) to complete the
computation of [ arccosx dx.

35, (8) Use integration by parts to show that, for x > 0,
1 2 1
/—lnxdx:(lnx) - | =Inxdx
X x

(b) Use your result in (a) to evaluate

1
/ ~Inxdx
x
36. (@) Use integration by parts to show that
fx"e" dx =x"¢e" ~n fx""e" dx

Such formulas are called reduction formulay, since they reduce the
exponent of x by 1 each time they are applied.

{(b) Apply the reduction formula in (a) repeatedly to compute

/x’e’ dx

37. (a) Use integration by parts to verify the validity of the
reduction formula

1 n
fx"e‘" dx = ~x"e® — = | x"1e™ dx
a a

where a is a constant not equal to 0.
(b) Apply the reduction formula in (a) to compute

/ x2e 3 dx

38. () Use integration by parts to verify the validity of the
reduction formula

/(lnx)" dx = x(Inx)" —n f(lnx)"" dx

(b) Apply the reduction formula in (a) repeatedly to compute

f (lnx)’ dx
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In Problems 3948, first make an appropriate substitution and then
use integration by parts to evaluate the indefinite integrals.

39. f cos /x dx 40. f sin x dx
41. f Pe P dx 42, / x’e"zdx
43, f sin x cos xe""* dx

1
48, f eV dx
0

. —in?
44. [smxcos’xe' n°x g
2
46. f eVitidx
1

4 1
1. f In(v/% + 1) dx 8. f 2 (e +1) dx
1 0

m722

In Problems 49-60, use either substitution or integration by parts to
evaluate each integral.

49, / xe Bdx 50, / xe ™ dx

afle o owfloa
tanx CcsSCx secx
53, f 2x sin(x?) dx 54, / 2x%sinx dx
1 1
55. fmdx 56. fF—T——de
57 f X _dx 58 f LN
“J x+3 x24+3

59, f-i—dx 60./“’24):
x2 43

x2 42
61. The integral

Inxdx

can be evaluated in two ways.

(a) WriteInx = 1- Inx and use integration by parts to evaluate
the integral.

(b) Use the substitution # = Inx and integration by parts to
evaluate the integral.

62. Use an appropriate substitution followed by integration by
parts to evaluate
/ e 1 dy

63. Use an appropriate substitution to evaluate

fx(x ) dx

64. Simplify the integrand and then use an appropriate substitu-
tion to evaluate

/‘ sin x — cos® x
(sinx — cosx)?

In Problems 65-70, evaluate each definite integral.
4
65. / eV* dx
1

0
2
67, —_—d
/—1 I+ x? ¥
n/4

69, / e*sinxdx
[

2
66. f In(x%e*)dx
1
2
68. / xinxdx
]

/6
70./ (! + tan® x) dx
0
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We conclude this section by providing a summary of the two most important |
cases: when the integrand is a rational function for which the denominator is a .
polynomial of degree 2 and is either (1) a product of two not necssarily distinct linear
factors or (2) an irreducible quadratic polynomial. !

The first step is to make sure that the degree of the numerator is less than the
degree of the denominator. If not, then we use long division to simplify the integrand.

We will now assume that the degree of the numerator is strictly less than the

degree of the denominator (i.e., the integrand is a proper rational function). We write ¢
the rational function f(x) as
P(x)

Q(x)

with Q(x) = ax? + bx + c,a # 0,and P(x) = rx + s. Either Q(x) can be factored
into two linear factors, or it is irreducible (i.e., does not have real roots).

flx) =

Case 1a: Q(x) is a product of two distinct linear factors. In this case, we write
Qx) = a(x — x1)(x — x2)

where x; and x; are the two distinct roots of Q(x). We then use the method of
partial fractions to simplify the rational function:

Q(x)  ax®+bx+c a

P(x)_ rx+s 1 A + B
X — X1 X - X2

The constants A and B must now be determined as in Example 3.
Case 1b: Q(x) is a product of two identical linear factors. In this case, we write

Q(x) = a(x — x;)*

where x| is the root of Q(x). We then use the method of partial fractions to simplify
the rational function:

P(X)  rx+s 1[ A B ]

o) _ax2+bx+c=; x—x; (x—=x)?

The constants A and B must now be determined as in Example 5.
Case 2: J(x) is an irreducible quadratic polynomial. In this case,

Q(x) = ax*+ bx +c¢ with b* —dac <0

and we must complete the square as in Example 2. Doing so then leads to integrals

of the form
/ dx or f ad d
A+ 1 2yl

The first integral is tan™! x 4 C, whereas the second integral can be evaluated by
substitution. (See Examples 6 and 7.)

Section 7.3 Problems

n 731,732 In Problems 5-8, write out the partial-fraction decomposition of the
In Problems 14, use long division to write f(x) as a sum of a  function f(x).
polynomial and a proper rational function. 5. flx) = 2x -3 6. f(x) = — x+1
L f(x)=2x2+5x—1 2 f(x)z_xz-—4x—l x(x+1) (Zx+Dx-DH
‘ x+2 x—1
3 2 3 2
N f(x)=3x +i§;’;’.x -2 4.f(x)=x —3x2-15 7. fle) = 4x? — 14x — 6 8 flx)= 16x — 6

2+x+3 x(x-3Dx+1 2x -50@x+1)




In Problems 9-12, write out the partial-fraction decompuosition of
the function f(x).

_.1 9x —7
% f =77 0 S0 =3
4x + 1 10
1. f(x) = 7 3x =10 2. f(x)= Ix2 4 8x — 3

In Problems 13-18, use partial-fraction decomposition to evaluate
the integrals.

1 1

. | ———d 4, f —dx
13 fx(x—Z) x(2x +1)

. | ——————d 6 | ———— dx
S e f(x—l)(x+2)

xt -2 -2 / 4x? —x ~1

. | ————d
” f Ax+2) croe-n"
In Problems 19-22, use partial-fraction decompositon to evaluate
each integral.

r-xt4x-4 /‘x3—3x2+x—6
3 e e (], 20. Y 3 1
1 f D" @ IO D
22 - 3x +2 f3x2+4x+3
——reereerreee (] 22, —_——
2 / Wy & TR

In Problems 23-26, complete the square in the denominator and

evaluate the integral.
1 : 1
| —— 2 e (]
B /.r2—2x+2dx 4',['x2+4x+5 !

1 ‘ 1
| —— 26, | —————d
25 fx’-4x+13dx fx2+2x+5 *

In Problems 27-36, evaluate each integral.

dx

27. f———-———dx -l
(x=3x+2) x+Hx+1
29, / T dx M./ﬁ;dx
. fo—x— 32 f;—z—_—a——_’—_—zdx
3
. /;z'i—;:-—z-dx 1, /;:;dx

A 7.4 Improper Integrals

In this section, we discuss definite integrals of two types with the following

characteristics:

L. One or both limits of integration are infinite; that is, the integration interval is

unbounded; or

integration.

0 1o % : i
0 l 2 3 4 Sx

Figure 7.9 The unbounded reglon
between the graph of y = ¢~* and
the x-axis for x > 0,
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44 x+3
38, [xz dx 36. fmdx
In Problems 37-44, evaluate each definite integral.
S . s
3. f B 38, f L _dx
3 X 3 X = i
1 2.2 1
3. f *dx 40, / o ax
o X+ 1 . X
3 1 3 1 J
41, d 4
/2 1—x X 2. _/; 1-x? *

1 1
43, f tan~! x dx 44, / xtan~'xdx
0 0

In Problems 45-52, evaluate each integral,

1
/ (x + 1)2x 46 /xZ(x —1)2 dx

2x2 4 2% — 1
47, _— X _——d
/(1—x)(1+x)2d)lr b / *

B -3
1
[( g 0 /(xz—-x—Z)zdx
* f‘iaz“ru *

52, ——
/ TEDICET
53. (a) Tocomplete Example 8, show that

(1 -x)¢ 6 4

=x%—4x® 455 —ax? 44—
T I Ay

(b) Show that

14 4 1 .4 4 1

x*(1-1x) x4l - x)

—dx < —_— 401 — )4
-/; 5 x_'/n 70 dxsj;x(l x)'dx

and conclude that

1 22 1
— L —— < ——
1260 — 7 ~ 630

Use this result to show that

3.140 < v <3.142

1 2. The integrand becomes infinite at one or more points of the interval of

We call such integrals improper integrals.

A 7.4.1 Type 1: Unbounded Intervals

Suppose that we wanted to compute the area of the unbounded region below the
graph of f(x) = e™ and above the x-axis for x > 0. (See Figure 7.9.) How would
we proceed? We know how to find the area of a reglon bounded by the graph of a
continuous function [here, f(x) = ¢~*] and the x-axis between 0 and z, namely,

2z
A(z) = / e fdx = —e““]g =1-e?
0

T a1 B o, i
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Solution

The function f(x) = 1/y/x + /X is continuous on (1, 00). The integrand looks

rather complicated, but since x + JVx < x 4 x for x > 1, it follows that

Hence,

as shown in Example 2. Therefore,

is divergent.

forx>1

1 1
Vit JE T V2

L Section 7.4 Problems

741,742

All the integrals in Problems 1-16 are improper and converge.
Explain in each case why the integral is improper, and evaluate each

integral.
xX oo
1. / 3¢5 dx 2. f xe “dx
0 0
® 2 *  dx
3 —d 4.
[o 14 x? x [ x(Inx)?

® 1
5.‘/]‘ ;3/—2dx
o0
7./ e Wdx
~00

had X
9, —_—d
f.w e
S dx

fox

12 f dx
1 xyInx
/2
13. f COX dx
[§]

0
14_f _ax
Jsinx o (x4 DA

1 2 dx
18. /:llnlxldx 16-/(; (x———l—)27

In Problems 17-28, determine whether each integral is convergent.
If the integral is convergent, compute its value.

0 1 0 1
17. /; F dx 18. _/1. ;T/—J dx
4 1 4 1
19. ‘/; ;-4' dx 20, /(: W dx
21, fzw-l———dx 22, f2~l—dx
0 (X - 1)1/3 0 (X — 1)4
* 1 0 1
23. / dx 24, f dx
0 Jx+1 -1 Jx+1

o0 e
25 / dx 26. / dx
. xlnx . xinx

-1 1
6. d
/_m i
had 2
8. / xe ¥ dx
-00

bt 4
10./ e dx

00

11,
0

2xdx

2 1 3
. —_—— 28. —d
h L S . /_m1+x2 *

29. Determine whether

[+ ]
1
—d
_/:w x2 -1 *
is convergent, Hint: Use the partial-fraction decomposition
11 1 1
x2—-1 2\x-1 x+1

30. Although we cannot compute the antiderivative of f(x)
e~/ it is known that

o0
f e dx = J2x

Use this fact to show that

x
f xRy = V2n

o0

Hint: Write the integrand as

2
x - (xe™* 1

and use integration by parts.

31. Determine the constant ¢ so that

oo
/ ce¥dx =1
0

32. Determine the constant ¢ so that

o0
¢
— dx =
/:m1+x2 ¥=1

33. In this problem, we investigate the integral

forQ < p < o0.




(a) Forz > 1,set

—_ ‘ l[
A(z)—/l = dx

AlQ) = -——1——(2"’“ -1
l-p

and show that

for p # 1 and
A()=Ing
forp=1.
(b) Use your results in (a) to show that, for0 < p < 1,
lim A(z) =00
o0

(c) Use your results in (a) to show that, for p > 1,

|
lim A(Z) = ——
1—00 p-1
34. In this problem, we investigate the integral
1
1
—dx
o XFP
for0 < p < o0.
(a) Compute .
—dx
xP

for0 < p < oo. (Hint: Treat the case where p = | separately.)
(b) Use your result in (a) to compute

1
1
/——dx
< x,’
forO<c< 1.

(¢) Use your result in (b) to show that
1 1

o xP l-p
for0<p < L
{(d) Show that
—dx
o x°P
is divergent for p > 1.

1743
35. (a) Show that

.2
O0<e™ <e™*

forx > 1.
(b) Use your result in (a) to show that

b 2
f e " dx
1

is convergent.
36. (a) Show that

forx > 0.
{b) Use your result in (a) to show that

* 1
—— ]
./1‘ V1+x4 :

is convergent.

7.4 M Improper Integrals

37. (a) Show that
1 1

> — >0

JI+x2 T &

forx > 1.
(b) Use your result in (a) to show that

> 1
—dx
/1. V1+x?
is divergent.

38. (a) Show that

1 1
—_— >

— >
Jx+hnx T Jx

forx > 1.
{b) Use your result in (a) to show that

e 1
— (x
/x Vx+inx

is divergent.
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In Problems 39-42, find a comparison function for each integrand

and determine whether the integral is convergent.

0 29 o0 1
39. e " dx 40. / ——
]:co 1 v 1+ x86
41, / dx
i J1i+x

42, / dx
o €t e*
43. (a) Show that

lim 25 =
s=00 VX

{b) Use your result in (a) to show that
2lnx < J/x

(7.17)

for sufficiently large x. Use a graphing calculator to determine just

how large x must be for (7.17) to hold.
(c) Use your result in (b) to show that

>x
f e~V dx
i

(7.18)

converges. Use a graphing calculator to sketch the function
flx) = e~v% together with its comparison function(s), and use
your graph to explain how you showed that the integral in (7.18)

is convergent.

44, (a) Show that

!
lim =% =9
oo X

(b) Use your result in (a) to show that, for anyc > 0,
cx > Inx
for sufficiently large x.

(¢} Use your result in (b) to show that, for any p > 0

f
xPe " < e—(/Z

provided that x is sufficiently large.
(d) Use your result in (c) to show that, for any p > 0,

50
/ xPe™t dx
0

is convergent.
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y 3
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12+
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Figure 7.39 The trapezoidal rule for [ L dx withn = 5.

In Example 3, since f(x) = x2, it follows that f”(x) = 2 and hence K = 2. The
error is therefore bounded by

1

ol

0.0104

which is the same as the actual error.
In Example 4, since f(x) = 1/x, we have | f"(x)| = 2/x* <2forl <x <2(as
in Example 2). Hence, with n = 5, the error bound is at most

Q-1
2= =0,
ey = 0067

The actual error was in fact smaller, only 0.00249. As with the midpoint rule, the
theoretical error can be quite a bit larger than the actual error.

Section 7.5 Prablems

2 751,752

In Problems 1-4, use the midpoint rule to approximate each integral
with the specified value of n.

2 1]
1.[ xtdx,n=4 Z.f(x+1)3dx,n=5
1 -1

1 /2
3. f e “dx,n=3 4, f sinxdx,n=4
0 )

In Problems 5-8, use the midpoint rule to approximate each integral

with the specified value of n. Compare your approximation with the
exact value.

1
5./ —dx,n=4
2 X

4
7. / JVxdx,n =4
0

1
6. f (e —Ddx,n=4
~1

42
8./ —=dx,n =75
2 VX

In Problems 9-12, use the trapezoidal rule to approximate each
integral with the specified value of n.

2 0
9./x2dx,n=4 10. / Hdx,n=35
!

-1
1 n/2
11 f e *dx,n=3 12, / sinxdx,n =4
0 0

In Problems 13-16, use the trapezoidal rule to approximate each

integral with the specified value of n. Compare your approximation
with the exact value.

3 1
13./x3dx,n=5 14, / (l—e*drx,n=4
1 -1

2 2
18, / Jrdx,n=4 16. f ldx,n=5
0 i X

17. How large should n be so that the midpoint rule approxima-

tion of
2
/ xXdx
0

is accurate to within 10747

In Problems 18-24, use the theoretical error bound to determine
how large n should be. [Hint: In each case, find the second
derivative of the integrand, graph it, and use a graphing calculator
to find an upper bound on | f"(x)).]

18. How large should 7 be so that the midpoint rule approxima-

tion of
2
/—dx
1 X

is accurate to within 10737




19. How large should n be so that the midpoint rule approxima-

tion of

2
/ e gy
0

is accurate to within 1074?
- 20, How large should n be so that the mi

tion of
81
/——d:
2 Int

is accurate to within 10737
21, How large should n be so that
approximation of |
f e “dx
0

is accurate to within 10757
22, How large should n be so that

approximation of
2
/ sinx dx
0

is accurate to within 10747
23, How large should n be so that
approximation of
2 ¢
e
[<a
Lt

is accurate to within 10747
24, How large should n be so that

approximation of
2
cosx
f dx
1 X
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is accurate to within 10-37

25. (a) Show graphically that, for n = 5, the trapezoidal rule
overestimates, and the midpoint rule underestimates,

1
f dx
0

In each case, compute the approximate value of the integral and
compare it with the exact value,

(b) The result in (a) has to do with the fact that y = x3 is
concave up on [0, 1}. To generalize that result to functions with
this concavity property, we assume that the function f(x) is
continuous, nonnegative, and concave up on the interval [a, b).
Denote by M, the midpoint rule apgroximation, and by T, the

trapezoidal rule approximation, of [’ f(x) dx. Explain in words
why

dpoint rule approxima-
the trapezoidal rule

the trapezoidal rule b
M, _<_f fx)dx <T,
a

(¢) If we assume that f(x) is continuous, nonnegative, and
concave down on [a, b}, then

the trapezoidal rule b
Mz [ sz,
a

Explain why this is so. Use this result to give an upper and a lower
bound on
the trapezoidal rule

/‘;ls/;dx

when n = 4 in the approximation.

A 7.6 The Taylor Approximation

-1 0 ] 2x

Figure 7.40 The graph of y = ¢* and
its linear approximation at 0.

In many ways, polynomials are the easiest functions to work with. Therefore, in this
section we will learn how to approximate functions by polynomials. We will see that
the approximation typically improves when we use higher-degree polynomials.

A 7.6.1 Taylor Polynomials

In Section 4.8, we discussed how to linearize a function about a given point. This
discussion led to the linear, or tangent, approximation. We found the following:

The linear approximation of f(x) at x = a is

L(x) = f(a) + f'(@)(x — a)

As an example, we look at
fx)=¢*

and approximate this function by its linearization at x = 0. We find that
L) =fO+ ff0Ox=1+x (7.19)

since f'(x) = e* and f(0) = f'(0) = 1. To see how close the approximation is, we
graph both f(x) and L(x) in the same coordinate system. (The result is shown in
Figure 7.40.) The approximation is quite good as long as x is close to 0. The figure
suggests that it gets gradually worse as we move away from 0. In the approximation,
we required only that f(x) and L(x) have in common f(0) = L(0) and f'(0) =
L'(0).
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a polynomial of degree 7 might not. We can easily check this; we find that

1 1 1 1
1+1+2_!+5+4_!+...+7!-=2.71825396825
1+1 Lyl d 1~--271827876984
+ +‘2—!'+§i+'4—!+‘-'+8—'!— .

Comparing these with e = 2.71828182846. . ., we see that the error s equal to 2,79 x
107° when n = 7and 3.06 X 10~® when n = 8. The error that we computed with (7.28)
is a worst-case scenario; that is, the true ertor <an be (and typically is) smaller than
the error bound. ™

, We have already seen one example in which a Taylor polynomial was useful only
for values close to the point at which we approximated the function, regardless of
n, the degree of the polynomial. In some situations, the error in the approximation
cannot be made small for any value close to the point of approximation, regardless
of n. One such example is the continuous function

e * forx>0
foy= IO forx <0
which is used, for instance, to describe the height of a tree as a function of age. We
can show that f®(0) = 0 for all k > 1, which implies that a Taylor polynomial of
degree n about x = 0 is
P(x)=0

for all n. This example clearly shows that it will not help to increase n; the
approximation just will not improve.

When we use Taylor polynomials to approximate functions, it is important to
know for which values of x the approximation can be made arbitrarily close by
choosing 7 large.

Following are a few of the most important functions, together with their Taylor
polynomials about x = 0 and the range of x values over which the approximation
can be made arbitrarily close by choosing 7 large enough:

x2 x? x
E=ldx+ ottt = 4 Ri(x), —00 <x < 00
2! 3 n!
. PR B 2
smx:x-——3—!—’(—5—7!—+9—!—---‘+(—1)m+R,,+1(x), X <X <X
x2 gt b 8 X
cosx:l—i-!—-l-a—!—-é—!-i-g!-—m-}-(—l)m+R,.+1(x), —00 < X < 00
X2 X xS x"
In(1 mX— o — e D g1y -
n(l+x)=x 2+3 4+5 + (-1 n+R,,+;(x), lc<x<t

1
-_—x=1+x+x2+x3+x4+---+x"+R,,+1(x), ~-l<x<1

Section 7.6 Problems .

17641 In Problems 6-10, compute the Taylor polynomial of degree n
'n Problems 1-5, find the linear approximation of f(x)atx = 0. about a = 0 for the indicated functions.
L flx)=e* 2. f(x) =sin(3x) 6. fix)= o=t 7. f(x)=cosx,n=35
1 X
b = - = x4
fo 1—x 4 fx)=x 8 f(x)=e*n=3 9 f)=x%n=6

Wof(x) =1n@2 +x?)

0. fx)=/T+x,n=3

furs

T vyt

SIS
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In Problems 11-16, compute the Taylor polynomial of degree
n about a = 0 for the indicated functions and compare the
value of the functions at the indicated point with the value of the
corresponding Taylor polynomial.

1. f(x)=2+x,n=3,x=0.1
12, flx)= =

13. f(x) =sinx,n=5,x=1

4. f(x)=e*,n=4,x=03

18. f(x)=tanx,n=2,x =0.1

16. f(x)=In(14x),n=3,x=0.1

17. (a) Find the Taylor polynomial of degree 3 about @ = 0 for
f(x) =sinx, .

(b) Use your resultin (a) to give an intuitive explanation why

Mm=3x=01
x

. sinx
lim— =1
-0 X

18. (a) Find the Taylor polynomial of degree 2 about a = 0 for
f(x) = cosx.
(b) Use your result in () to give an intuitive explanation why

cosx — 1

lim =0

x—=0 X
n76.2

In Problems 19-23, compute the Taylor polynomial of degree n
about a and compare the value of the approximation with the value
of the function at the given point x.

9 fx)=X,a=1ln=3x=2
20. f(x)=Inx,a=1,n=3x=2
21 f(x) =cosx,a= Fn=3r=%
2. fr)=x"a=~-1,n=3x=-09
. fx)=ea=2,n=3x=21
24, Show that
T*~T}4+4TXNT -T)
for T close to 7,.
25. Show that, for positive constants r and &,

N
rN (1 - —k—) ~rN
for N close to 0.

26. (a) Show that, for positive constants a and &,

aR a

R =r~ iR

for R close to 0.

X 7.7 Tables of Integrals (Optional)

(b) Show that, for positive constants a and k,

aR a a
IR —— R — — -k
SR k+R 2 +4k(R )

for R close to k.

1763
In Problems 27-30, use the following form of the error term
A g
Ry (x) = ! x

where c is between 0 and x, to determine in advance the degree
of Taylor polynomial at a = 0 that would achieve the indicated
accuracy in the interval [0,x). (Do not compute the Taylor
polynomial.) '

2% f(x) =é€*,x =2, error < 1073

28. f(x) =cosx,x =1, error < 1072

29, fx)=1/(1+x),x =02, error < 102

30. f(x) =In(1 +x),x =0.1, error < 102

31 Let f(x) =e Y forx > Oand fx)=0forx =0. Compute
a Taylor polynomial of degree 2 at x = 0, and determine how large
the error is.

32. We can show that the Taylor polynomial for f(x) = (1 + x)°
aboutx = 0, with  a positive constant, converges forx € (-1, 1).
Show that

(1+x)"’=H—atx~|»m—(mz';l),\:2

ala - 1)(a—2) 3

+ 3 B4+ Ry (x)

33. We can show that the Taylor polynomial for f(x) = tan~' x
about x = 0 converges for x| < 1.
(a) Show that the following is true:

\ P I

tan~ - —— —_— v
M= - T T S b Realo)

(b) Explain why the following holds:

= A

+...

\ TR
~Ni -

+

W e

=1~

(This series converges very slowly, as you would see if you used it
to approximate x.)

Before the advent of software that could integrate functions, tables of indefinite
integrals were useful aids for evaluating integrals. In using a table of integrals, it is stijl
necessary to bring the integrand of interest into a form that is listed in the table—

and there are many integrals that simply cannot be evaluated exactly and must be

evaluated numerically. We will give a very brief list of indefinite integrals and explain

how to use such tables.

aldiinghasith
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@ 7.7.1 A Note on Software Packages That Can Integrate

Mathematicians and scientists use software packages to integrate functions. They are
" not difficult to use with some practice. Although they will not give you insight into
what technique could be used to solve an integration problem, they quickly give you
the correct answer. For instance, if we used MATLAB, one of the common software
packages, to calculate the integral in Example 8 of Section 7.3, we would enter the

following string of commands into our computer:
syms x;

f=x"4*(1-x)"4/(1+x"2);

int(£,0,1)

MATLAB then returns

ans = 22/7-pi

Section 7.7 Prohlems

[n Problems 1-8, use the table on pages 383-384 to compute each 1. / (2 = 1)e * dx
integral.

X dx
L /2x—3dx 2 / 16 + x2 13. /cosz(Sx—3)dx

5 /\/x2—16dx
1 /4
5 / e dx 6./ e " cos(2x) dx
0 o

p ¢ 17. /ev+1 sin (zx) dx
. / *lnxdx 8. dx 2
1

xlnx
¢ 4
‘n Problems 9-22, use the table on pages 383-384 to compute each 19, f ! dx

y xInyx
21. / cos(In(3x)) dx

4, / sin(2x) cos(2x) dx

15, / V9 +4xtdx

ntegral after manipulating the integrand in a suitable way.

716 . 2 .
), / €' cos (x - g) dx 10. / xIn(2x - 1)dx
0 1

Chapter 7 Key Terms

discuss the following definitions and

12, /(x + 12 dx

o [—2
1 f4x2+4x+1 *

1
16. / ——dx
V16 — 9x2

18. / (x — D%¥ dx

20, f (x+2)%Inxdx
1

3
22, —_—
fx2—4x+8 *

387

oncepts:

. The substitution rule for indefinite
1tegrals

« The substitution rule for definite
tegrals

+ Integration by parts

» The “trick” of “multiplying by 1”
+ Partial-fraction decomposition

+ Partial-fraction method

' hapter 7 Review Problems

1 Problems 1-30, evaluate the given indefinite integrals.

7. Proper rational function
8. Irreducible quadratic factor
9. Improper integral

10. Integration when the interval is
unbounded

11. Integration when the integrand is
discontinuous

12. Convergence and divergence of
improper integrals

13. Comparison results for improper
integrals

s / A+ /)3 dx

fxz(l—xJ)zdx 2 /—~de
1+ sinx 7. fxsec’(3x2) dx
- 2
/4xe"zdx 4. /de 9, /xlnxdx
1+ x2

14. Numerical integration: midpoint and
trapezoidal rule

15. Error bounds for the midpoint and
the trapezoidal rule

16. Using tables of integrals for
integration

17. Linear approximation
18. Taylor polynomial of degree n

19. Taylor’s formula

6. fx\/3x + ldx

8. f tan x sec’ x dx

10. /x’ Inx?dx
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11. /seclen(tanx)dx
1

13. /mdx )

15. /tanxdx

17. /e"‘ sinx dx

19. / Vet dx

21 fsin’xdx
1
5 d
A _/x(x-—l) *
x
28. fx+5dx

1
s d
27‘/.%_’_5 X

(x +1)?
x-1

29. dx

12 fﬁlnﬁdx

1
14. /4—x2 dx

16. ftan"xdx

18. /x sinx dx

20, f Inyxdx

22, / sinx cos x e""* dx

., -
u f<x+1)(x-2) *

X
26. f:tT:l——de
2&[2—-—dx

30. f Zx+l
,/1—.:2

In Problems 31-50, evaluate the given definite integrals.

321
31./x+dx
1 X

1
33, / xe "1 dx
0

LI |
35.'/0 mdx

6
1
37./ dx
2 Jx~2

© 1
39. —d
_/0‘ 94 x? x

1
47, f xInxdx
0

n/4
49, f e sinxdx
0

/2
32. / xsinxdx
0

2
34, / Inxdx
1

1/2 2

—_—dx
o J1—x?
L |
38./0 x_zdx
o0
1
40../0. ;3—+—3-dx
oo
1
2. ——d
/o Gt
44./ -—dx
1
46.[ —dx
1 VX

1
48, f x2*dx
0

36.

n/4
50, f xsin(2x)dx
0

In' Problems 51-54, use (a) the midpoint rule and (b) the
trapezoidal rule to approximate each integral with the specified
value of n.

2 ]
51.f(x2—1)dx,n=4 52. / x*-Ddx,n=14
0 -1

1 x/4
53, f e *dx,n=35 54, f sin(4x)dx,n =4
(] )
In Problems 55-58, find the Taylor polynomial of degree n about
x = a for each function.

58, f(x) =sin(2x),a=0,n=3
56. f(x)—e“‘ ,a=0,n=3
57. fx)=Inx,a=1n=3

58, f(x) =

59, Cost of Gene Substitution (Adapted from Roughgarden,
1996) Suppose that an advantageous mutation arises in a
population. Initially, the gene carrying this mutation is at a low
frequency. As the gene spreads through the population, the
average fitness of the population increases. We denote by fay, (1)
the average fitness of the population at time ¢, by fu,;3(0) the
average fitness of the population at time 0 (when the mutation
arose), and by K the final value of the average fitness after
the mutation has spread through the population. Haldane (1957)
suggested measuring the cost of evolution (now known as the cost
of gene substitution) by the cumulative difference between the
current and the final fitness—that is, by

_3,a =4 n=4

/‘; (K - favg(t))dt

In Figure 7.43, shade the region whose area is equal to the cost of
gene substitution.

fugD4

fag(0)

Figure 7.43 The cost of gene substitution. See Problem 59,




