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Solution Figure 4.8 suggests that ƒ  has its absolute maximum value near and its
absolute minimum value of 0 at Let’s verify this observation.

We evaluate the function at the critical points and endpoints and take the largest and
smallest of the resulting values.

The first derivative is

.

The only critical point in the domain is the point , where ln The values
of ƒ at this one critical point and at the endpoints are

We can see from this list that the function’s absolute maximum value is it oc-
curs at the critical interior point The absolute minimum value is 0 and occurs at the
right endpoint 

EXAMPLE 4 Find the absolute maximum and minimum values of on the
interval 

Solution We evaluate the function at the critical points and endpoints and take the
largest and smallest of the resulting values.

The first derivative

has no zeros but is undefined at the interior point The values of ƒ at this one criti-
cal point and at the endpoints are

Critical point value:

Endpoint values:

We can see from this list that the function’s absolute maximum value is and it
occurs at the right endpoint The absolute minimum value is 0, and it occurs at the
interior point where the graph has a cusp (Figure 4.9).x = 0

x = 3.
23 9 L 2.08,

ƒs3d = s3d2>3 = 23 9 .

ƒs -2d = s -2d2>3 = 23 4

ƒs0d = 0

x = 0.

ƒ¿sxd = 2
3 x-1>3 = 2

323 x

[-2, 3] .
ƒsxd = x2>3

x = e2.
x = e.

10e L 27.2;

 ƒ(e2) = 10e2(2 - 2 ln e) = 0.

Endpoint values:  ƒ(1) = 10(2 - ln 1) = 20

Critical point value:  ƒ(e) = 10e

x = 1.x = e[1, e2]

ƒ¿(x) = 10(2 - ln x) - 10x a1x b = 10(1 - ln x)

x = e2.
x = 3

x

y

10 2 3–1–2

1

2

Absolute maximum;
also a local maximumLocal

maximum

Absolute minimum;
also a local minimum

y ! x2/3,  –2 ≤ x ≤ 3

FIGURE 4.9 The extreme values of
on occur at and

(Example 4).x = 3
x = 0[-2, 3]ƒsxd = x2>3

Exercises 4.1

Finding Extrema from Graphs
In Exercises 1–6, determine from the graph whether the function has
any absolute extreme values on [a, b]. Then explain how your answer
is consistent with Theorem 1.

1. 2.

x

y

0 a c b

y ! f (x)

x

y

0 a c1 bc2

y ! h(x)

3. 4.

x

y

0 a bc

y ! h(x)

x

y

0 a bc

y ! f (x)

1 2 3 4 5 6 7 8

5
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0

15
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(1, 20)

(e, 10e)

(e2, 0)
x

y

FIGURE 4.8 The extreme values of
on occur at

and (Example 3).x = e2x = e
[1, e2]ƒ(x) = 10x(2 - ln x)
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5. 6.

In Exercises 7–10, find the absolute extreme values and where they occur.

7. 8.

9. 10.

In Exercises 11–14, match the table with a graph.

11. 12.

13. 14.

a b c a b c

a b c a b c

(a) (b)

(c) (d)

x ƒ !(x)

a does not exist
b does not exist
c !1.7

x ƒ !(x)

a does not exist
b 0
c !2

x ƒ !(x)

a 0
b 0
c !5

x ƒ !(x)

a 0
b 0
c 5

2
(1, 2)

–3 2
–1

x

y

0 2

5

x

y

2

2

–2 0

y

x1–1

1

–1

y

x

x

y

0 a c b

y ! g(x)

x

y

0 a c b

y ! g(x)

228 Chapter 4: Applications of Derivatives

In Exercises 15–20, sketch the graph of each function and determine
whether the function has any absolute extreme values on its domain.
Explain how your answer is consistent with Theorem 1.

15.

16.

17.

18.

19.

20.

Absolute Extrema on Finite Closed Intervals
In Exercises 21–40, find the absolute maximum and minimum values
of each function on the given interval. Then graph the function. Iden-
tify the points on the graph where the absolute extrema occur, and in-
clude their coordinates.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40. g(x) = e-x2
, -2 … x … 1

ƒ(x) = 1
x + ln x, 0.5 … x … 4

h(x) = ln (x + 1), 0 … x … 3

g(x) = xe-x, -1 … x … 1

ƒstd = ƒ t - 5 ƒ , 4 … t … 7

ƒstd = 2 - ƒ t ƒ , -1 … t … 3

g sxd = sec x, - p
3

… x … p
6

g sxd = csc x, p
3

… x … 2p
3

ƒsud = tan u, - p
3

… u … p
4

ƒsud = sin u, - p
2

… u … 5p
6

g sxd = -25 - x2, -25 … x … 0

g sxd = 24 - x2, -2 … x … 1

hsxd = -3x2>3, -1 … x … 1

hsxd = 23 x, -1 … x … 8

Fsxd = - 1
x  , -2 … x … -1

Fsxd = - 1
x2 , 0.5 … x … 2

ƒsxd = 4 - x2, -3 … x … 1

ƒsxd = x2 - 1, -1 … x … 2

ƒsxd = -x - 4, -4 … x … 1

ƒsxd = 2
3

 x - 5, -2 … x … 3

ƒ(x) = L x + 1, -1 … x 6 0

cos x,      0 … x … p
2

y = 3 sin x, 0 6 x 6 2p

h(x) = L 1
x ,   -1 … x 6 02x, 0 … x … 4

g(x) = e -x,     0 … x 6 1
x - 1, 1 … x … 2

y = 6
x2 + 2

, -1 6 x 6 1

ƒ(x) = ƒ x ƒ , -1 6 x 6 2
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4.1 Extreme Values of Functions 229

In Exercises 41–44, find the function’s absolute maximum and mini-
mum values and say where they are assumed.

41.

42.

43.

44.

Finding Critical Points
In Exercises 45–52, determine all critical points for each function.

45. 46.

47. 48.

49. 50.

51. 52.

Finding Extreme Values
In Exercises 53–68, find the extreme values (absolute and local) of the
function and where they occur.

53. 54.

55. 56.

57. 58.

59. 60.

61. 62.

63. 64.

65. 66.

67. 68.

Local Extrema and Critical Points
In Exercises 69–76, find the critical points, domain endpoints, and ex-
treme values (absolute and local) for each function.

69. 70.

71. 72.

73. 74.

75.

76.

In Exercises 77 and 78, give reasons for your answers.

77. Let 

a. Does exist?

b. Show that the only local extreme value of ƒ occurs at 

c. Does the result in part (b) contradict the Extreme Value Theorem?

d. Repeat parts (a) and (b) for replacing 2 by a.

78. Let 

a. Does exist? b. Does exist?

c. Does exist? d. Determine all extrema of ƒ.ƒ¿s -3d
ƒ¿s3dƒ¿s0d

ƒsxd = ƒ x3 - 9x ƒ .
ƒsxd = sx - ad2>3 ,

x = 2.

ƒ¿s2d
ƒsxd = sx - 2d2>3 .

y = • - 1
4

 x2 - 1
2

 x + 15
4

,  x … 1

x3 - 6x2 + 8x,      x 7 1

y = e -x2 - 2x + 4,  x … 1
-x2 + 6x - 4,  x 7 1

y = e3 - x,        x 6 0
3 + 2x - x2,  x Ú 0

y = e 4 - 2x,  x … 1
x + 1,   x 7 1

y = x223 - xy = x24 - x2

y = x2>3sx2 - 4dy = x2>3sx + 2d

y = sin-1 (ex)y = cos-1 (x2)

y = x2 ln xy = x ln x

y = ex - e-xy = ex + e-x

y = x + 1
x2 + 2x + 2

y = x
x2 + 1

y = 23 + 2x - x2y = 123 1 - x2

y = x - 42xy = 2x2 - 1

y = x3(x - 5)2y = x3 + x2 - 8x + 5

y = x3 - 2x + 4y = 2x2 - 8x + 9

g(x) = 22x - x2y = x2 - 322x

ƒ(x) = x2

x - 2
y = x2 + 2

x

g(x) = (x - 1)2(x - 3)2ƒ(x) = x(4 - x)3

ƒ(x) = 6x2 - x3y = x2 - 6x + 7

hsud = 3u2>3, -27 … u … 8

g(ud = u3>5, -32 … u … 1

ƒsxd = x5>3, -1 … x … 8

ƒsxd = x4>3, -1 … x … 8

Theory and Examples
79. A minimum with no derivative The function has

an absolute minimum value at even though ƒ is not differ-
entiable at Is this consistent with Theorem 2? Give rea-
sons for your answer.

80. Even functions If an even function ƒ(x) has a local maximum
value at can anything be said about the value of ƒ at

Give reasons for your answer.

81. Odd functions If an odd function g(x) has a local minimum
value at can anything be said about the value of g at

Give reasons for your answer.

82. We know how to find the extreme values of a continuous function
ƒ(x) by investigating its values at critical points and endpoints. But
what if there are no critical points or endpoints? What happens
then? Do such functions really exist? Give reasons for your answers.

83. The function

models the volume of a box.

a. Find the extreme values of V.

b. Interpret any values found in part (a) in terms of the volume
of the box.

84. Cubic functions Consider the cubic function

a. Show that ƒ can have 0, 1, or 2 critical points. Give examples
and graphs to support your argument.

b. How many local extreme values can ƒ have?

85. Maximum height of a vertically moving body The height of a
body moving vertically is given by

with s in meters and t in seconds. Find the body’s maximum height.

86. Peak alternating current Suppose that at any given time t (in
seconds) the current i (in amperes) in an alternating current cir-
cuit is What is the peak current for this cir-
cuit (largest magnitude)?

Graph the functions in Exercises 87–90. Then find the extreme values
of the function on the interval and say where they occur.

87.

88.

89.

90.

COMPUTER EXPLORATIONS
In Exercises 91–98, you will use a CAS to help find the absolute ex-
trema of the given function over the specified closed interval. Perform
the following steps.

a. Plot the function over the interval to see its general behavior there.

b. Find the interior points where (In some exercises, you
may have to use the numerical equation solver to approximate a
solution.) You may want to plot as well.

c. Find the interior points where does not exist.ƒ¿
ƒ¿

ƒ¿ = 0.

ksxd = ƒ x + 1 ƒ + ƒ x - 3 ƒ , - q 6 x 6 q
hsxd = ƒ x + 2 ƒ - ƒ x - 3 ƒ , - q 6 x 6 q
gsxd = ƒ x - 1 ƒ - ƒ x - 5 ƒ , -2 … x … 7

ƒsxd = ƒ x - 2 ƒ + ƒ x + 3 ƒ , -5 … x … 5

i = 2 cos t + 2 sin t .

s = - 1
2

 gt2 + y0 t + s0, g 7 0,

ƒsxd = ax3 + bx2 + cx + d .

V sxd = xs10 - 2xds16 - 2xd, 0 6 x 6 5,

x = -c?
x = c ,

x = -c?
x = c ,

x = 0.
x = 0

ƒsxd = ƒ x ƒ

T
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d. Evaluate the function at all points found in parts (b) and (c) and
at the endpoints of the interval.

e. Find the function’s absolute extreme values on the interval and
identify where they occur.

91.

92.

93. ƒsxd = x2>3s3 - xd, [-2, 2]

ƒsxd = -x4 + 4x3 - 4x + 1, [-3>4, 3]

ƒsxd = x4 - 8x2 + 4x + 2, [-20>25, 64>25]

230 Chapter 4: Applications of Derivatives

Proof Being continuous, ƒ assumes absolute maximum and minimum values on [a, b]
by Theorem 1. These can occur only

1. at interior points where is zero,

2. at interior points where does not exist,

3. at the endpoints of the function’s domain, in this case a and b.

By hypothesis, ƒ has a derivative at every interior point. That rules out possibility (2), leav-
ing us with interior points where and with the two endpoints a and b.

If either the maximum or the minimum occurs at a point c between a and b, then
by Theorem 2 in Section 4.1, and we have found a point for Rolle’s Theorem.

If both the absolute maximum and the absolute minimum occur at the endpoints,
then because it must be the case that ƒ is a constant function with

for every Therefore and the point c can be taken
anywhere in the interior (a, b).

The hypotheses of Theorem 3 are essential. If they fail at even one point, the graph
may not have a horizontal tangent (Figure 4.11).

Rolle’s Theorem may be combined with the Intermediate Value Theorem to show when
there is only one real solution of an equation , as we illustrate in the next example.

EXAMPLE 1 Show that the equation

has exactly one real solution.

x3 + 3x + 1 = 0

ƒsxd = 0

ƒ¿sxd = 0x H [a, b] .ƒsxd = ƒsad = ƒsbd
ƒsad = ƒsbd

ƒ¿scd = 0

ƒ¿ = 0

ƒ¿
ƒ¿

THEOREM 3—Rolle’s Theorem Suppose that is continuous at every
point of the closed interval [a, b] and differentiable at every point of its interior
(a, b). If then there is at least one number c in (a, b) at which
ƒ¿scd = 0.

ƒsad = ƒsbd,

y = ƒsxd

f '(c3) ! 0

f '(c2) ! 0
f '(c1) ! 0

f '(c) ! 0

y ! f (x)

y ! f (x)

0 a c b

0 bc3c2c1a

(a)

(b)

x

x

y

y

FIGURE 4.10 Rolle’s Theorem says that
a differentiable curve has at least one
horizontal tangent between any two points
where it crosses a horizontal line. It may
have just one (a), or it may have more (b).

HISTORICAL BIOGRAPHY

Michel Rolle
(1652–1719)

94.

95.

96.

97.

98. ƒ(x) = ln (2x + x sin x),   [1, 15]

ƒ(x) = px2e - 3x>2,   [0, 5]

ƒsxd = x3>4 - sin x + 1
2

, [0, 2p]

ƒsxd = 2x + cos x, [0, 2p]

ƒsxd = 2 + 2x - 3x2>3, [-1, 10>3]

4.2 The Mean Value Theorem

We know that constant functions have zero derivatives, but could there be a more compli-
cated function whose derivative is always zero? If two functions have identical derivatives
over an interval, how are the functions related? We answer these and other questions in this
chapter by applying the Mean Value Theorem. First we introduce a special case, known as
Rolle’s Theorem, which is used to prove the Mean Value Theorem.

Rolle’s Theorem

As suggested by its graph, if a differentiable function crosses a horizontal line at two dif-
ferent points, there is at least one point between them where the tangent to the graph is
horizontal and the derivative is zero (Figure 4.10). We now state and prove this result.
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236 Chapter 4: Applications of Derivatives

Exercises 4.2

Checking the Mean Value Theorem
Find the value or values of c that satisfy the equation

in the conclusion of the Mean Value Theorem for the functions and in-
tervals in Exercises 1–8.

1.

2.

3.

4.

5.

6.

7.

8.

Which of the functions in Exercises 9–14 satisfy the hypotheses of the
Mean Value Theorem on the given interval, and which do not? Give
reasons for your answers.

9.

10.

11.

12.

13.

14.

15. The function

is zero at and and differentiable on (0, 1), but its de-
rivative on (0, 1) is never zero. How can this be? Doesn’t Rolle’s
Theorem say the derivative has to be zero somewhere in (0, 1)?
Give reasons for your answer.

16. For what values of a, m, and b does the function

satisfy the hypotheses of the Mean Value Theorem on the interval
[0, 2]?

ƒsxd = • 3, x = 0
-x2 + 3x + a, 0 6 x 6 1
mx + b, 1 … x … 2

x = 1x = 0

ƒsxd = e x, 0 … x 6 1
0, x = 1

ƒ(x) = e2x - 3,           0 … x … 2
6x - x2 - 7, 2 6 x … 3

ƒ(x) = e x2 - x,             -2 … x … -1
2x2 - 3x - 3, -1 6 x … 0

ƒsxd = L sin x
x  ,  -p … x 6 0

0, x = 0

ƒsxd = 2xs1 - xd, [0, 1]

ƒsxd = x4>5, [0, 1]

ƒsxd = x2>3, [-1, 8]

g(x) = e x3, -2 … x … 0
x2,    0 6 x … 2

ƒsxd = x3 - x2, [-1, 2]

ƒsxd = ln (x - 1), [2, 4]

ƒsxd = sin-1 x, [-1, 1]

ƒsxd = 2x - 1,  [1, 3]

ƒsxd = x + 1
x ,  c1

2
, 2 dƒsxd = x2>3, [0, 1]

ƒsxd = x2 + 2x - 1, [0, 1]

ƒsbd - ƒsad
b - a

= ƒ¿scd

Roots (Zeros)
17. a. Plot the zeros of each polynomial on a line together with the

zeros of its first derivative.

i)

ii)

iii)

iv)

b. Use Rolle’s Theorem to prove that between every two zeros of
there lies a zero of

18. Suppose that is continuous on [a, b] and that ƒ has three zeros
in the interval. Show that has at least one zero in (a, b). Gener-
alize this result.

19. Show that if throughout an interval [a, b], then has at
most one zero in [a, b]. What if throughout [a, b] instead?

20. Show that a cubic polynomial can have at most three real zeros.

Show that the functions in Exercises 21–28 have exactly one zero in
the given interval.

21.

22.

23.

24.

25.

26.

27.

28.

Finding Functions from Derivatives
29. Suppose that and that for all x. Must

for all x? Give reasons for your answer.

30. Suppose that and that for all x. Must 
for all x? Give reasons for your answer.

31. Suppose that for all x. Find ƒ(2) if

a. b. c.

32. What can be said about functions whose derivatives are constant?
Give reasons for your answer.

In Exercises 33–38, find all possible functions with the given derivative.

33. a. b. c.

34. a. b. c.

35. a. b. c. y¿ = 5 + 1
x2y¿ = 1 - 1

x2y¿ = - 1
x2

y¿ = 3x2 + 2x - 1y¿ = 2x - 1y¿ = 2x

y¿ = x3y¿ = x2y¿ = x

ƒs -2d = 3.ƒs1d = 0ƒs0d = 0

ƒ¿sxd = 2x

2x + 5
ƒsxd =ƒ¿sxd = 2ƒs0d = 5

ƒsxd = 3
ƒ¿sxd = 0ƒs -1d = 3

r sud = tan u - cot u - u, s0, p>2d

r sud = sec u - 1
u3 + 5, s0, p>2d

r sud = 2u - cos2 u + 22, s - q , q d

r sud = u + sin2 au
3
b - 8, s - q , q d

g std = 1
1 - t

+ 21 + t - 3.1, s -1, 1d

g std = 2t + 21 + t - 4, s0, q d

ƒsxd = x3 + 4
x2 + 7, s - q , 0d

ƒsxd = x4 + 3x + 1, [-2, -1]

ƒ– 6 0
ƒ¿ƒ– 7 0

ƒ–
ƒ–

nxn - 1 + sn - 1dan - 1xn - 2 + Á + a1.

xn + an - 1xn - 1 + Á + a1 x + a0

y = x3 - 33x2 + 216x = xsx - 9dsx - 24d
y = x3 - 3x2 + 4 = sx + 1dsx - 2d2

y = x2 + 8x + 15

y = x2 - 4
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4.2 The Mean Value Theorem 237

36. a. b. c.

37. a. b. c.

38. a. b. c.

In Exercises 39–42, find the function with the given derivative whose
graph passes through the point P.

39.

40.

41.

42.

Finding Position from Velocity or Acceleration
Exercises 43–46 give the velocity and initial position of a
body moving along a coordinate line. Find the body’s position at
time t.

43.

44.

45.

46.

Exercises 47–50 give the acceleration initial velocity,
and initial position of a body moving on a coordinate line. Find the
body’s position at time t.

47.

48.

49.

50.

Applications
51. Temperature change It took 14 sec for a mercury thermometer

to rise from to 100!C when it was taken from a freezer and
placed in boiling water. Show that somewhere along the way the
mercury was rising at the rate of 8.5! .

52. A trucker handed in a ticket at a toll booth showing that in 2 hours
she had covered 159 mi on a toll road with speed limit 65 mph.
The trucker was cited for speeding. Why?

53. Classical accounts tell us that a 170-oar trireme (ancient Greek or
Roman warship) once covered 184 sea miles in 24 hours. Explain
why at some point during this feat the trireme’s speed exceeded
7.5 knots (sea miles per hour).

54. A marathoner ran the 26.2-mi New York City Marathon in 
2.2 hours. Show that at least twice the marathoner was running at
exactly 11 mph, assuming the initial and final speeds are zero.

55. Show that at some instant during a 2-hour automobile trip the car’s
speedometer reading will equal the average speed for the trip.

56. Free fall on the moon On our moon, the acceleration of gravity
is If a rock is dropped into a crevasse, how fast will it
be going just before it hits bottom 30 sec later?

1.6 m>sec2 .

C>sec

-19°C

a = 9
p2 cos 

3t
p , ys0d = 0, ss0d = -1

a = -4 sin 2t, ys0d = 2, ss0d = -3

a = 9.8, ys0d = -3, ss0d = 0

a = et, y(0) = 20, s(0) = 5

a = d2s>dt2 ,

y = 2
p cos 

2t
p , s(p2) = 1

y = sin pt, ss0d = 0

y = 32t - 2, ss0.5d = 4

y = 9.8t + 5, ss0d = 10

y = ds>dt

r¿std = sec t tan t - 1, Ps0, 0d

ƒ¿(x) = e2x,  P a0, 
3
2
b

g¿(x) = 1
x2 + 2x, P(-1, 1)

ƒ¿sxd = 2x - 1, Ps0, 0d

y¿ = 2u - sec2 uy¿ = 2uy¿ = sec2 u

y¿ = sin 2t + cos 
t
2

y¿ = cos 
t
2

y¿ = sin 2t

y¿ = 4x - 12x
y¿ = 12x

y¿ = 1

22x

Theory and Examples
57. The geometric mean of a and b The geometric mean of two

positive numbers a and b is the number Show that the value
of c in the conclusion of the Mean Value Theorem for 
on an interval of positive numbers 

58. The arithmetic mean of a and b The arithmetic mean of two
numbers a and b is the number Show that the value of
c in the conclusion of the Mean Value Theorem for on
any interval 

59. Graph the function

What does the graph do? Why does the function behave this way?
Give reasons for your answers.

60. Rolle’s Theorem

a. Construct a polynomial ƒ(x) that has zeros at 

b. Graph ƒ and its derivative together. How is what you see
related to Rolle’s Theorem?

c. Do and its derivative illustrate the same
phenomenon as ƒ and 

61. Unique solution Assume that ƒ is continuous on [a, b] and dif-
ferentiable on (a, b). Also assume that ƒ(a) and ƒ(b) have opposite
signs and that between a and b. Show that ex-
actly once between a and b.

62. Parallel tangents Assume that ƒ and g are differentiable on
[a, b] and that and Show that there is
at least one point between a and b where the tangents to the
graphs of ƒ and g are parallel or the same line. Illustrate with a
sketch.

63. Suppose that for . Show that 
.

64. Suppose that for all x-values. Show that
.

65. Show that for all x-values. (Hint: Consider
on [0, x].)

66. Show that for any numbers a and b, the sine inequality 
is true.

67. If the graphs of two differentiable functions ƒ(x) and g(x) start at
the same point in the plane and the functions have the same rate
of change at every point, do the graphs have to be identical? Give
reasons for your answer.

68. If for all values w and x and ƒ is a dif-
ferentiable function, show that for all x-values.

69. Assume that ƒ is differentiable on and that 
Show that is negative at some point between a and b.

70. Let ƒ be a function defined on an interval [a, b]. What conditions
could you place on ƒ to guarantee that

where and refer to the minimum and maximum
values of on [a, b]? Give reasons for your answers.ƒ¿

max ƒ¿min ƒ¿

min ƒ¿ …
ƒsbd - ƒsad

b - a
… max ƒ¿,

ƒ¿
ƒsbd 6 ƒsad.a … x … b

-1 … ƒ¿(x) … 1
ƒ ƒ(w) - ƒ(x) ƒ … ƒ w - x ƒ

sin a ƒ … ƒ b - a ƒƒ sin b -

ƒ(t) = cos t
ƒ cos x - 1 ƒ … ƒ x ƒ

ƒ(-1) 6 ƒ(1) 6 2 + ƒ(-1)
0 6 ƒ¿(x) 6 1>2ƒ(1) … 3

ƒ(4) -1 … x … 4ƒ¿(x) … 1

ƒsbd = g sbd .ƒsad = g sad

ƒsxd = 0ƒ¿ Z 0

ƒ¿?
g¿gsxd = sin x

ƒ¿
1, and 2 .

x = -2, -1, 0,

ƒsxd = sin x sin sx + 2d - sin2 sx + 1d.

[a, b] is c = sa + bd>2.
ƒsxd = x2

sa + bd>2.

[a, b] is c = 2ab .
ƒsxd = 1>x2ab .

T
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71. Use the inequalities in Exercise 70 to estimate 
for and 

72. Use the inequalities in Exercise 70 to estimate 
for and 

73. Let ƒ be differentiable at every value of x and suppose that
that and that 

a. Show that for all x.

b. Must Explain.

74. Let be a quadratic function defined on a
closed interval [a, b]. Show that there is exactly one point c in
(a, b) at which ƒ satisfies the conclusion of the Mean Value
Theorem.

ƒsxd = px2 + qx + r

ƒ¿s1d = 0?

ƒsxd Ú 1

ƒ¿ 7 0 on s1, q d.ƒ¿ 6 0 on s - q , 1d ,ƒs1d = 1,

ƒs0d = 2.0 … x … 0.11>s1 - x4d
ƒs0.1d if ƒ¿sxd =

ƒs0d = 1.0 … x … 0.11>s1 + x4 cos xd
ƒs0.1d if ƒ¿sxd =

238 Chapter 4: Applications of Derivatives

4.3 Monotonic Functions and the First Derivative Test

In sketching the graph of a differentiable function it is useful to know where it increases
(rises from left to right) and where it decreases (falls from left to right) over an interval.
This section gives a test to determine where it increases and where it decreases. We also
show how to test the critical points of a function to identify whether local extreme values
are present.

Increasing Functions and Decreasing Functions

As another corollary to the Mean Value Theorem, we show that functions with positive de-
rivatives are increasing functions and functions with negative derivatives are decreasing
functions. A function that is increasing or decreasing on an interval is said to be monotonic
on the interval.

75. Use the same-derivative argument, as was done to prove the Prod-
uct and Power Rules for logarithms, to prove the Quotient Rule
property.

76. Use the same-derivative argument to prove the identities

a. b.

77. Starting with the equation derived in the text,
show that for any real number x. Then show that

for any numbers and 

78. Show that for any numbers and x2.x1(ex1)x2 = ex1 x2 = (ex2)x1

x2.x1ex1>ex2 = ex1 - x2

e-x = 1>ex
ex1ex2 = ex1 + x2,

sec-1 x + csc-1 x = p
2

tan-1 x + cot-1 x = p
2

T

T

COROLLARY 3 Suppose that ƒ is continuous on [a, b] and differentiable on
(a, b).

If ƒ¿sxd 6 0 at each point x H sa, bd, then ƒ is decreasing on [a, b] .

If ƒ¿sxd 7 0 at each point x H sa, bd, then ƒ is increasing on [a, b] .

Proof Let and be any two points in [a, b] with The Mean Value Theorem
applied to ƒ on says that

for some c between and The sign of the right-hand side of this equation is the same
as the sign of because is positive. Therefore, if is positive
on (a, b) and if is negative on (a, b).

Corollary 3 is valid for infinite as well as finite intervals. To find the intervals where
a function ƒ is increasing or decreasing, we first find all of the critical points of ƒ. If

are two critical points for ƒ, and if the derivative is continuous but never zero on
the interval (a, b), then by the Intermediate Value Theorem applied to , the derivative
must be everywhere positive on (a, b), or everywhere negative there. One way we can de-
termine the sign of on (a, b) is simply by evaluating the derivative at a single point c in
(a, b). If then for all x in (a, b) so ƒ is increasing on [a, b] by Corol-
lary 3; if then ƒ is decreasing on [a, b]. The next example illustrates how we
use this procedure. 

ƒ¿(c) 6 0,
ƒ¿(x) 7 0ƒ¿(c) 7 0,

ƒ¿

ƒ¿
ƒ¿a 6 b

ƒ¿ƒsx2d 6 ƒsx1d
ƒ¿ƒsx2d 7 ƒsx1dx2 - x1ƒ¿scd

x2 .x1

ƒsx2d - ƒsx1d = ƒ¿scdsx2 - x1d

[x1, x2]
x1 6 x2 .x2x1
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4.3 Monotonic Functions and the First Derivative Test 241

EXAMPLE 3 Find the critical points of

Identify the intervals on which ƒ is increasing and decreasing. Find the function’s local and
absolute extreme values.

Solution The function ƒ is continuous and differentiable for all real numbers, so the crit-
ical points occur only at the zeros of 

Using the Derivative Product Rule, we find the derivative

Since is never zero, the first derivative is zero if and only if

The zeros and partition the x-axis into intervals as follows.

Interval
Sign of
Behavior of ƒ increasing decreasing increasing

We can see from the table that there is a local maximum (about 0.299) at and a
local minimum (about ) at . The local minimum value is also an absolute
minimum because for . There is no absolute maximum. The func-
tion increases on and and decreases on . Figure 4.23 shows
the graph.

(-3, 1)(1, q )(- q , -3)
ƒ x ƒ 7 23ƒ(x) 7 0

x = 1-5.437
x = -3

+-+ƒœ
1 6 x-3 6 x 6 1x 6 -3

x = 1x = -3

 (x + 3)(x - 1) = 0.

 x2 + 2x - 3 = 0

ex

 = (x2 + 2x - 3)ex.

 = (x2 - 3) # ex + (2x) # ex

 ƒ¿(x) = (x2 - 3) # d
dx

 ex + d
dx

 (x2 - 3) # ex

ƒ¿.

ƒ(x) = (x2 - 3)ex.

Exercises 4.3

Analyzing Functions from Derivatives
Answer the following questions about the functions whose derivatives
are given in Exercises 1–14:

a. What are the critical points of ƒ?

b. On what intervals is ƒ increasing or decreasing?

c. At what points, if any, does ƒ assume local maximum and
minimum values?

1. 2.

3. 4.

5.

6.

7.

8.

9. 10. ƒ¿(x) = 3 - 62x
 , x Z 0ƒ¿(x) = 1 - 4

x2 , x Z 0

ƒ¿(x) =
(x - 2)(x + 4)
(x + 1)(x - 3)

 , x Z -1, 3

ƒ¿(x) =
x2(x - 1)

x + 2
, x Z -2

ƒ¿sxd = sx - 7dsx + 1dsx + 5d
ƒ¿(x) = (x - 1)e-x

ƒ¿sxd = sx - 1d2sx + 2d2ƒ¿sxd = sx - 1d2sx + 2d
ƒ¿sxd = sx - 1dsx + 2dƒ¿sxd = xsx - 1d

11. 12.

13.

14.

Identifying Extrema
In Exercises 15–44:

a. Find the open intervals on which the function is increasing
and decreasing.

b. Identify the function’s local and absolute extreme values, if
any, saying where they occur.

15. 16.

ƒ¿(x) = (sin x + cos x)(sin x - cos x), 0 … x … 2p

ƒ¿(x) = (sin x - 1)(2 cos x + 1), 0 … x … 2p

ƒ¿sxd = x-1>2sx - 3dƒ¿sxd = x-1>3sx + 2d

–5 –4 –3 –2 –1 1 2 3

–6

–5

–4

–3

–2

–1

1

2

3

4

x

y y ! (x2 " 3)ex

FIGURE 4.23 The graph of
(Example 3).ƒ(x) = (x2 - 3)ex

y 5 f (x)

y

x

–2

–1

1

2

2 31–1–2–3

y 5 f (x)

y

x

–2

–1

1

2

2 31–1–2–3
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17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

41. 42.

43. 44.

In Exercises 45–56:

a. Identify the function’s local extreme values in the given do-
main, and say where they occur.

b. Which of the extreme values, if any, are absolute?

c. Support your findings with a graphing calculator or computer
grapher.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

In Exercises 57–64:

a. Find the local extrema of each function on the given interval,
and say where they occur.

b. Graph the function and its derivative together. Comment on
the behavior of ƒ in relation to the signs and values of ƒ¿.

g sxd = x2

4 - x2 , -2 6 x … 1

g sxd = x - 2
x2 - 1

, 0 … x 6 1

ƒsxd = 2x2 - 2x - 3, 3 … x 6 q
ƒsxd = 225 - x2, -5 … x … 5

k sxd = x3 + 3x2 + 3x + 1, - q 6 x … 0

hsxd = x3

3
- 2x2 + 4x, 0 … x 6 q

ƒstd = t3 - 3t2, - q 6 t … 3

ƒstd = 12t - t3, -3 … t 6 q
g sxd = -x2 - 6x - 9, -4 … x 6 q
g sxd = x2 - 4x + 4, 1 … x 6 q
ƒsxd = sx + 1d2, - q 6 x … 0

ƒsxd = 2x - x2, - q 6 x … 2

ƒ(x) = x2 ln xƒ(x) = x ln x

ƒ(x) = e2xƒ(x) = e2x + e-x

k sxd = x2>3sx2 - 4dhsxd = x1>3sx2 - 4d
g sxd = x2>3sx + 5dƒsxd = x1>3sx + 8d

ƒsxd = x3

3x2 + 1
ƒsxd = x2 - 3

x - 2
, x Z 2

g sxd = x225 - xg sxd = x28 - x2

g sxd = 42x - x2 + 3ƒsxd = x - 62x - 1

Kstd = 15t3 - t5Hstd = 3
2

 t4 - t6

g sxd = x4 - 4x3 + 4x2ƒsxd = x4 - 8x2 + 16

hsrd = sr + 7d3ƒsrd = 3r3 + 16r

ƒsud = 6u - u3ƒsud = 3u2 - 4u3

hsxd = 2x3 - 18xhsxd = -x3 + 2x2

g std = -3t2 + 9t + 5g std = - t2 - 3t + 3

242 Chapter 4: Applications of Derivatives

57.

58.

59.

60.

61.

62.

63.

64.

Theory and Examples
Show that the functions in Exercises 65 and 66 have local extreme val-
ues at the given values of and say which kind of local extreme the
function has.

65.

66.

67. Sketch the graph of a differentiable function through
the point (1, 1) if and

a.

b.

c.

d.

68. Sketch the graph of a differentiable function that has

a. a local minimum at (1, 1) and a local maximum at (3, 3);

b. a local maximum at (1, 1) and a local minimum at (3, 3);

c. local maxima at (1, 1) and (3, 3);

d. local minima at (1, 1) and (3, 3).

69. Sketch the graph of a continuous function such that

a. as 
as 

b. as 
and 

70. Sketch the graph of a continuous function such that

a.
and 

b.
and 

71. Discuss the extreme-value behavior of the function 
. How many critical points does this function

have? Where are they located on the x-axis? Does ƒ have an 
absolute minimum? An absolute maximum? (See Exercise 49 in
Section 2.3.)

72. Find the intervals on which the function 
is increasing and decreasing. Describe the reasoning be-

hind your answer.

73. Determine the values of constants a and b so that 
has an absolute maximum at the point (1, 2).

74. Determine the values of constants a, b, c, and d so that
has a local maximum at the point

(0, 0) and a local minimum at the point .(1, -1)
ƒ(x) = ax3 + bx2 + cx + d

ax2 + bx
ƒ(x) =

a Z 0,
ƒsxd = ax2 + bx + c,

x Z 0x sin (1>x),
ƒ(x) =

h¿sxd : - q  as x : 0+ .
hs0d = 0, -2 … hsxd … 0 for all x, h¿sxd : q  as x : 0-,

h¿sxd : q  as x : 0+ ;
hs0d = 0, -2 … hsxd … 2 for all x, h¿sxd : q  as x : 0-,

y = hsxd
g¿sxd : q  as x : 2+ .g¿ 7 0 for x 7 2,

x : 2-,g s2d = 2, g¿ 6 0 for x 6 2, g¿sxd : - q
x : 2+ ;-1 6 g¿ 6 0 for x 7 2, and g¿sxd : -1+

x : 2-,g s2d = 2, 0 6 g¿ 6 1 for x 6 2, g¿sxd : 1-
y = g sxd

y = ƒsxd
ƒ¿sxd 6 0 for x Z 1.

ƒ¿sxd 7 0 for x Z 1;

ƒ¿sxd 6 0 for x 6 1 and ƒ¿sxd 7 0 for x 7 1;

ƒ¿sxd 7 0 for x 6 1 and ƒ¿sxd 6 0 for x 7 1;

ƒ¿s1d = 0
y = ƒsxd

hsud = 5 sin 
u
2

 , 0 … u … p, at u = 0 and u = p

hsud = 3 cos 
u
2

 , 0 … u … 2p, at u = 0 and u = 2p

u ,

ƒsxd = sec2 x - 2 tan x, -p
2

6 x 6 p
2

ƒsxd = csc2 x - 2 cot x, 0 6 x 6 p
ƒsxd = -2 cos x - cos2 x, -p … x … p

ƒsxd = x
2

- 2 sin 
x
2

 , 0 … x … 2p

ƒsxd = -2x + tan x, -p
2

6 x 6 p
2

ƒsxd = 23 cos x + sin x, 0 … x … 2p

ƒsxd = sin x - cos x, 0 … x … 2p

ƒsxd = sin 2x, 0 … x … p

y 5 f (x)

–2

–1

1

2

2 31–1–2–3
x

y y

x

–2

–1

1

2

2 31–1–2–3

y 5 f (x)

T

T
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75. Locate and identify the absolute extreme values of

a. ln (cos x) on 

b. cos (ln x) on 

76. a. Prove that is increasing for 

b. Using part (a), show that if 

77. Find the absolute maximum and minimum values of 
on [0, 1].

78. Where does the periodic function take on its ex-
treme values and what are these values?

x

y

0

y ! 2esin (x/2)

ƒsxd = 2esin sx>2d
ex - 2x

ƒsxd =
x 7 1.ln x 6 x

x 7 1.ƒ(x) = x - ln x

[1>2, 2].

[-p>4, p>3],
79. Find the absolute maximum value of and say

where it is assumed.

80. a. Prove that if  

b. Use the result in part (a) to show that

81. Show that increasing functions and decreasing functions are one-
to-one. That is, show that for any and in I, implies

Use the results of Exercise 81 to show that the functions in Exercises
82–86 have inverses over their domains. Find a formula for 
using Theorem 3, Section 3.8.

82. 83.

84. 85.

86. ƒsxd = x5>3 ƒsxd = s1 - xd3ƒsxd = 1 - 8x3

ƒsxd = 27x3ƒsxd = s1>3dx + s5>6d

dƒ -1>dx

ƒsx2d Z ƒsx1d.
x2 Z x1x2x1

ex Ú 1 + x + 1
2

 x2.

x Ú 0.ex Ú 1 + x

ƒsxd = x2 ln s1>xd

4.4 Concavity and Curve Sketching

We have seen how the first derivative tells us where a function is increasing, where it is de-
creasing, and whether a local maximum or local minimum occurs at a critical point. In this
section we see that the second derivative gives us information about how the graph of a
differentiable function bends or turns. With this knowledge about the first and second de-
rivatives, coupled with our previous understanding of asymptotic behavior and symmetry
studied in Sections 2.6 and 1.1, we can now draw an accurate graph of a function. By or-
ganizing all of these ideas into a coherent procedure, we give a method for sketching
graphs and revealing visually the key features of functions. Identifying and knowing the
locations of these features is of major importance in mathematics and its applications to
science and engineering, especially in the graphical analysis and interpretation of data.

Concavity

As you can see in Figure 4.24, the curve rises as x increases, but the portions de-
fined on the intervals and turn in different ways. As we approach the ori-
gin from the left along the curve, the curve turns to our right and falls below its tangents.
The slopes of the tangents are decreasing on the interval As we move away from
the origin along the curve to the right, the curve turns to our left and rises above its tan-
gents. The slopes of the tangents are increasing on the interval This turning or
bending behavior defines the concavity of the curve.

s0, q d .

s - q , 0d .

s0, q ds - q , 0d
y = x3

DEFINITION The graph of a differentiable function is

(a) concave up on an open interval I if is increasing on I;

(b) concave down on an open interval I if is decreasing on I.ƒ¿
ƒ¿

y = ƒsxd

If has a second derivative, we can apply Corollary 3 of the Mean Value Theorem
to the first derivative function. We conclude that increases if on I, and decreases
if ƒ– 6 0.

ƒ– 7 0ƒ¿
y = ƒsxd

x

y

0

CONCAV
E

U
P

CO
N

CA
VE

DOW
Nf ' decreases

f ' increases

y ! x3

FIGURE 4.24 The graph of is
concave down on and concave up
on (Example 1a).s0, q d

s - q , 0d
ƒsxd = x3
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4.4 Concavity and Curve Sketching 251

oror

or

y ! f (x) y ! f (x) y ! f (x)

Differentiable ⇒
smooth, connected; graph
may rise and fall

y' " 0 ⇒ rises from
left to right;
may be wavy

y' # 0 ⇒ falls from
left to right;
may be wavy

y'' " 0 ⇒ concave up
throughout; no waves; graph
may rise or fall

y'' # 0 ⇒ concave down
throughout; no waves;
graph may rise or fall

y'' changes sign at an
inflection point

y' changes sign ⇒ graph
has local maximum or local
minimum

y' ! 0  and  y'' # 0
at a point; graph has
local maximum

y' ! 0  and  y'' " 0
at a point; graph has
local minimum

Exercises 4.4

Analyzing Functions from Graphs
Identify the inflection points and local maxima and minima of the
functions graphed in Exercises 1–8. Identify the intervals on which
the functions are concave up and concave down.

1. 2.

3. 4.

0
x

y

y !     x1/3(x2 $ 7)9
14

0
x

y

y !    (x2 $ 1)2/33
4

0
x

y

y !      $ 2x2 % 4x4

4

0
x

y

y !      $     $ 2x %x3

3
1
3

x2

2

5. 6.

7. 8.

Graphing Equations
Use the steps of the graphing procedure on page 248 to graph the
equations in Exercises 9–58. Include the coordinates of any local and
absolute extreme points and inflection points.

9. 10.

11. 12. y = xs6 - 2xd2y = x3 - 3x + 3

y = 6 - 2x - x2y = x2 - 4x + 3

x

y

0–! 3!
2

y ! 2 cos x $ !2 x,  –! ! x !
3!
2

x

y

y ! sin &x&, –2! ! x ! 2!

0

NOT TO SCALE

x

y

y ! tan x $ 4x, –     # x #!
2

!
2

00
x

y

–

y ! x % sin 2x, –       ! x !2!
3

2!
3

2!
3

2!
3

figure summarizes how the derivative and second derivative affect the shape of a
graph.
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13. 14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

41. 42.

43. 44.

45. 46.

47.

48.

49. 50.

51. 52.

53. 54.

55. 56.

57. 58.

Sketching the General Shape, Knowing 
Each of Exercises 59–80 gives the first derivative of a continuous
function Find and then use steps 2–4 of the graphing
procedure on page 248 to sketch the general shape of the graph of ƒ.

59. 60.

61. 62.

63. 64. y¿ = sx - 1d2s2x + 3dy¿ = xsx2 - 12d

y¿ = x2s2 - xdy¿ = xsx - 3d2

y¿ = x2 - x - 6y¿ = 2 + x - x2

y–y = ƒsxd .

yœ

y = ex

1 + exy = 1
1 + e-x

y = ln x2x
y = ln (cos x)

y = xe-xy = ex - 2e-x - 3x

y = x (ln x)2y = ln (3 - x2)

y = ex

xy = xe1>xy = 2ƒ x - 4 ƒ

y = 2 ƒ x ƒ = e2-x,  x 6 02x,    x Ú 0

y = ƒ x2 - 2 x ƒy = ƒ x2 - 1 ƒ

y = 5
x4 + 5

y = 8x
x2 + 4

y = 23 x3 + 1y = x2 - 3
x - 2

y = x2 + 2
xy = 216 - x2

y = (2 - x2)3>2y = x28 - x2

y = x2>3(x - 5)y = x2>3 a5
2

- xb y = 5x2>5 - 2xy = 2x - 3x2>3 y = 21 - x2

2x + 1
y = x2x2 + 1

y = x2>5y = x1>5y = cos x + 23 sin x, 0 … x … 2p

y = sin x cos x, 0 … x … p

y = 4
3

 x - tan x, -p
2

6 x 6 p
2

y = 23x - 2 cos x, 0 … x … 2p

y = x - sin x, 0 … x … 2p

y = x + sin x, 0 … x … 2p

y = x ax
2

- 5b4

y = x5 - 5x4 = x4sx - 5d
y = x4 + 2x3 = x3sx + 2d
y = 4x3 - x4 = x3s4 - xd
y = -x4 + 6x2 - 4 = x2s6 - x2d - 4

y = x4 - 2x2 = x2sx2 - 2d
y = 1 - sx + 1d3

y = sx - 2d3 + 1

y = 1 - 9x - 6x2 - x3y = -2x3 + 6x2 - 3

252 Chapter 4: Applications of Derivatives

65. 66.

67.

68.

69. 70.

71.

72.

73.

74.

75. 76.

77. 78.

79.

80.

Sketching y from Graphs of and 
Each of Exercises 81–84 shows the graphs of the first and second de-
rivatives of a function Copy the picture and add to it a
sketch of the approximate graph of ƒ, given that the graph passes
through the point P.

81. 82.

83.

84.

Graphing Rational Functions
Graph the rational functions in Exercises 85–102.

85. 86.

87. 88.

89. 90. y = x2

x2 - 1
y = 1

x2 - 1

y = x2 - 4
2x

y = x4 + 1
x2

y = x2 - 49
x2 + 5x - 14

y = 2x2 + x - 1
x2 - 1

y ! f '(x)

y ! f ''(x)

P

0
x

y

y ! f '(x)

y ! f ''(x)

P

0
x

y

y ! f '(x)

y ! f ''(x)
P

x

y

y ! f '(x)

y ! f ''(x)

P

x

y

y = ƒsxd .

yflyœ

y¿ = e -x2,  x … 0
x2,    x 7 0

y¿ = 2 ƒ x ƒ = e -2x,  x … 0
2x,    x 7 0

y¿ = x-4>5sx + 1dy¿ = x-2>3sx - 1d
y¿ = sx - 2d-1>3y¿ = sx + 1d-2>3y¿ = sin t, 0 … t … 2p

y¿ = cos t, 0 … t … 2p

y¿ = 1 - cot2 u, 0 6 u 6 p

y¿ = tan2 u - 1, - p
2

6 u 6 p
2

y¿ = csc2  
u
2

 , 0 6 u 6 2py¿ = cot  
u
2

 , 0 6 u 6 2p

y¿ = tan x, - p
2

6 x 6 p
2

y¿ = sec2 x, - p
2

6 x 6 p
2

y¿ = sx2 - 2xdsx - 5d2y¿ = s8x - 5x2d(4 - x)2
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4.4 Concavity and Curve Sketching 253

91. 92.

93. 94.

95. 96.

97. 98.

99. 100.

101.

102.

Theory and Examples
103. The accompanying figure shows a portion of the graph of a twice-

differentiable function At each of the five labeled
points, classify and as positive, negative, or zero.

104. Sketch a smooth connected curve with

105. Sketch the graph of a twice-differentiable function with
the following properties. Label coordinates where possible.

x y Derivatives

2 1

4 4

6 7

106. Sketch the graph of a twice-differentiable function that
passes through the points , , , , and (2, 2)
and whose first two derivatives have the following sign patterns.

y–: -     +     -
-1       1   

y¿: +     -     +     -
-2       0          2

s1, 1ds0, 0ds -1, 1ds -2, 2d
y = ƒsxd

y¿ 6 0, y– 6 0x 7 6
y¿ = 0, y– 6 0
y¿ 7 0, y– 6 04 6 x 6 6
y¿ 7 0, y– = 0
y¿ 7 0, y– 7 02 6 x 6 4
y¿ = 0, y– 7 0
y¿ 6 0, y– 7 0x 6 2

y = ƒsxd

ƒ–sxd 7 0 for x 7 0. ƒ¿sxd 7 0 for ƒ x ƒ 7 2,

ƒ–sxd 6 0 for x 6 0,  ƒs2d = 0,

ƒ¿sxd 6 0 for ƒ x ƒ 6 2,  ƒs0d = 4,

ƒ¿s2d = ƒ¿s -2d = 0,  ƒs -2d = 8,

y = ƒsxd

y ! f (x)
S

TR

Q
P

x

y

0

y–y¿
y = ƒsxd .

y = 4x
x2 + 4

  (Newton's serpentine)

y = 8
x2 + 4

  (Agnesi's witch)

y = x - 1
x2(x - 2)

y = x
x2 - 1

y = x3 + x - 2
x - x2y = x3 - 3x2 + 3x - 1

x2 + x - 2

y = -  
x2 - x + 1

x - 1
y = x2 - x + 1

x - 1

y = -  
x2 - 4
x + 1

y = x2

x + 1

y = x2 - 4
x2 - 2

y = -  
x2 - 2
x2 - 1

Motion Along a Line The graphs in Exercises 107 and 108 show
the position of an object moving up and down on a coordi-
nate line. (a) When is the object moving away from the origin?
toward the origin? At approximately what times is the (b) velocity
equal to zero? (c) acceleration equal to zero? (d) When is the accel-
eration positive? negative?

107.

108.

109. Marginal cost The accompanying graph shows the hypotheti-
cal cost of manufacturing x items. At approximately
what production level does the marginal cost change from de-
creasing to increasing?

110. The accompanying graph shows the monthly revenue of the Wid-
get Corporation for the last 12 years. During approximately what
time intervals was the marginal revenue increasing? Decreasing?

111. Suppose the derivative of the function is

At what points, if any, does the graph of ƒ have a local mini-
mum, local maximum, or point of inflection? (Hint: Draw the
sign pattern for )y¿ .

y¿ = sx - 1d2sx - 2d .

y = ƒsxd

t

y

y ! r(t)

50 10

C
os

t

c ! f (x)

Thousands of units produced
20 40 60 80 100120

x

c

c = ƒsxd

D
is

pl
ac

em
en

t

s ! f (t)

D
is

pl
ac

em
en

t
Time (sec)

5 10 150
t

s

D
is

pl
ac

em
en

t

s ! f (t)

Time (sec)
5 10 150

t

s

s = ƒstd
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112. Suppose the derivative of the function is

At what points, if any, does the graph of ƒ have a local mini-
mum, local maximum, or point of inflection?

113. For sketch a curve that has and
Can anything be said about the concavity of such a

curve? Give reasons for your answer.

114. Can anything be said about the graph of a function that
has a continuous second derivative that is never zero? Give rea-
sons for your answer.

115. If b, c, and d are constants, for what value of b will the curve
have a point of inflection at 

Give reasons for your answer.

116. Parabolas

a. Find the coordinates of the vertex of the parabola

b. When is the parabola concave up? Concave down? Give rea-
sons for your answers.

117. Quadratic curves What can you say about the inflection
points of a quadratic curve Give
reasons for your answer.

118. Cubic curves What can you say about the inflection points of
a cubic curve Give reasons
for your answer.

119. Suppose that the second derivative of the function is 

For what x-values does the graph of ƒ have an inflection point?

y– = (x + 1)(x - 2).

y = ƒsxd

y = ax3 + bx2 + cx + d, a Z 0?

y = ax2 + bx + c, a Z 0?

y = ax2 + bx + c, a Z 0.

x = 1?y = x3 + bx2 + cx + d

y = ƒsxd

ƒ¿sxd = 1>x .
ƒs1d = 0y = ƒsxdx 7 0,

y¿ = sx - 1d2sx - 2dsx - 4d .

y = ƒsxd

254 Chapter 4: Applications of Derivatives

120. Suppose that the second derivative of the function is 

For what x-values does the graph of ƒ have an inflection point?

121. Find the values of constants a, b, and c so that the graph of
has a local maximum at local min-

imum at and inflection point at .

122. Find the values of constants a, b, and c so that the graph of
has a local minimum at and a lo-

cal maximum at .

COMPUTER EXPLORATIONS
In Exercises 123–126, find the inflection points (if any) on the graph of
the function and the coordinates of the points on the graph where the
function has a local maximum or local minimum value. Then graph the
function in a region large enough to show all these points simultane-
ously. Add to your picture the graphs of the function’s first and second
derivatives. How are the values at which these graphs intersect the 
x-axis related to the graph of the function? In what other ways are the
graphs of the derivatives related to the graph of the function?

123. 124.

125.

126.

127. Graph and its first two derivatives to-
gether. Comment on the behavior of ƒ in relation to the signs and
values of and 

128. Graph and its second derivative together for
Comment on the behavior of the graph of ƒ in re-

lation to the signs and values of ƒ– .
0 … x … 2p .

ƒsxd = x cos x

ƒ– .ƒ¿

ƒsxd = 2x4 - 4x2 + 1

y = x4

4
- x3

3
- 4x2 + 12x + 20

y = 4
5 x5 + 16x2 - 25

y = x3 - 12x2y = x5 - 5x4 - 240

(-1, -2)
x = 3y = (x2 + a)>(bx + c)

(1, 11)x = -1,
x = 3,y = ax3 + bx2 + cx

y– = x2(x - 2)3(x + 3).

y = ƒsxd

4.5 Indeterminate Forms and L’Hôpital’s Rule

John (Johann) Bernoulli discovered a rule using derivatives to calculate limits of frac-
tions whose numerators and denominators both approach zero or The rule is known
today as l’Hôpital’s Rule, after Guillaume de l’Hôpital. He was a French nobleman who
wrote the first introductory differential calculus text, where the rule first appeared in
print. Limits involving transcendental functions often require some use of the rule for
their calculation.

Indeterminate Form 

If we want to know how the function

behaves near (where it is undefined), we can examine the limit of as 
We cannot apply the Quotient Rule for limits (Theorem 1 of Chapter 2) because the limit
of the denominator is 0. Moreover, in this case, both the numerator and denominator ap-
proach 0, and is undefined. Such limits may or may not exist in general, but the limit
does exist for the function under discussion by applying l’Hôpital’s Rule, as we will
see in Example 1d.

Fsxd
0>0

x : 0.Fsxdx = 0

Fsxd = x - sin x
x3

0/0

+ q .
HISTORICAL BIOGRAPHY

Guillaume François Antoine de l’Hôpital
(1661–1704)
Johann Bernoulli
(1667–1748)
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4.5 Indeterminate Forms and L’Hôpital’s Rule 261

Exercises 4.5

Finding Limits in Two Ways
In Exercises 1–6, use l’Hôpital’s Rule to evaluate the limit. Then eval-
uate the limit using a method studied in Chapter 2.

1. 2.

3. 4.

5. 6.

Applying l’Hôpital’s Rule
Use l’Hôpital’s rule to find the limits in Exercises 7–50.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

41. 42. lim
x:0+

 (csc x - cot x + cos x)lim
x:1+

 a 1
x - 1

- 1
ln x
b

lim
x:0+

 a3x + 1
x - 1

sin x
blim

x:0+
 

sln x)2

ln ssin x)

lim
x:0+

 (ln x - ln sin x)lim
x: q

 (ln 2x - ln (x + 1))

lim
y:0

 
2ay + a2 - a

y , a 7 0lim
y:0

 
25y + 25 - 5

y

lim
x:0+

 
ln (ex - 1)

ln x
lim

x:0+
 
ln (x2 + 2x)

ln x

lim
x: q

 
log2 x

log3 (x + 3)
lim

x: q
 
ln (x + 1)

log2 x

lim
x:0

 
3x - 1
2x - 1

lim
x:0

 
x2x

2x - 1

lim
u:0

 
(1>2)u - 1
u

lim
u:0

 
3sin u - 1
u

lim
x: (p>2)-

 ap
2

- xb  tan xlim
x: (p>2)-

ax - p
2
b  sec x

lim
t:0

 
t sin t

1 - cos t
lim
t:0

 
t (1 - cos t)

t - sin t

lim
x:p>2 

ln (csc x)

(x - (p>2))2lim
x:0

 
x2

ln (sec x)

lim
x:1

 
x - 1

ln x - sin px
lim
u:p>2 

1 - sin u
1 + cos 2u

lim
u: -p>3 

3u + p
sin (u + (p>3))

lim
u:p>2 

2u - p
cos (2p - u)

lim
x:0

 
sin x - x

x3lim
x:0

 
8x2

cos x - 1

lim
t:0

 
sin 5t

2t
lim
t:0

 
sin t2

t

lim
x: q

 
x - 8x2

12x2 + 5x
lim

x: q
 
5x3 - 2x
7x3 + 3

lim
t:1

 
3t3 - 3

4t3 - t - 3
lim

t: -3
 
t3 - 4t + 15
t2 - t - 12

lim
x: - 5

 
x2 - 25
x + 5lim

x:2
 
x - 2
x2 - 4

lim
x: q

 
2x2 + 3x

x3 + x + 1
lim
x:0

 
1 - cos x

x2

lim
x:1

 
x3 - 1

4x3 - x - 3
lim

x: q
 
5x2 - 3x
7x2 + 1

lim
x:0

 
sin 5x

xlim
x: -2

 
x + 2
x2 - 4

43. 44.

45. 46.

47. 48.

49. 50.

Indeterminate Powers and Products
Find the limits in Exercise 51–66.

51. 52.

53. 54.

55. 56.

57. 58.

59. 60.

61. 62.

63. 64.

65. 66.

Theory and Applications
L’Hôpital’s Rule does not help with the limits in Exercises 67–74. Try
it—you just keep on cycling. Find the limits some other way.

67. 68.

69. 70.

71. 72.

73. 74.

75. Which one is correct, and which one is wrong? Give reasons for
your answers.

a. b.

76. Which one is correct, and which one is wrong? Give reasons for
your answers.

a.

b.  lim
x:0

 
x2 - 2x

x2 - sin x
= lim

x:0
 

2x - 2
2x - cos x

= -2
0 - 1

= 2

 = lim
x:0

 
2

2 + sin x
= 2

2 + 0
= 1

 lim
x:0

 
x2 - 2x

x2 - sin x
= lim

x:0
 

2x - 2
2x - cos x

lim
x:3

  
x - 3
x2 - 3

= 0
6

= 0lim
x:3

  
x - 3
x2 - 3

= lim
x:3

  
1
2x

= 1
6

 lim
x:0+

 
x

e-1>x lim
x: q

 
ex2

xex

 lim
x: -q

 
2x + 4x

5x - 2x lim
x: q

 
2x - 3x

3x + 4x

lim
x:0+

  
cot x
csc xlim

x: sp>2d-
  
sec x
tan x

lim
x:0+

 
2x2sin x

lim
x: q

 
29x + 12x + 1

 lim
x:0+

 sin x # ln x lim
x:0+

 x tan ap
2

- xb
 lim
x:0+

 x sln xd2 lim
x:0+

 x2 ln x

 lim
x: q

 ax2 + 1
x + 2

b1>x
lim

x: q
 ax + 2

x - 1
b x

lim
x:0+

 a1 + 1
x b x

lim
x:0+  

xx

lim
x:0

 (ex + x)1>xlim
x: q

 (1 + 2x)1>(2 ln x)

lim
x: q

 x1>ln xlim
x:0+

 x-1>ln x

lim
x:e+

 (ln x)1>(x - e)lim
x: q

 (ln x)1>x
lim

x:1+
 x1>(x - 1)lim

x:1+
 x1>(1 - x)

 lim
x:0

 
sin 3x - 3x + x2

sin x sin 2x
 lim
u:0

 
u - sin u cos u

tan u - u

 lim
x:0

 
sex - 1d2

x sin x
 lim
x:0

 
x - sin x

x tan x

lim
x: q

 x2e-xlim
t: q

 
et + t2

et - t

lim
h:0

 
eh - (1 + h)

h2lim
u:0

 
cos u - 1

eu - u - 1
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77. Only one of these calculations is correct. Which one? Why are the
others wrong? Give reasons for your answers.

a.

b.

c.

d.

78. Find all values of c that satisfy the conclusion of Cauchy’s Mean
Value Theorem for the given functions and interval.

a.

b.

c.

79. Continuous extension Find a value of c that makes the function

continuous at Explain why your value of c works.

80. For what values of a and b is 

81. Form

a. Estimate the value of

by graphing over a suitably large inter-
val of x-values.

b. Now confirm your estimate by finding the limit with 
l’Hôpital’s Rule. As the first step, multiply ƒ(x) by the frac-
tion and simplify 
the new numerator.

82. Find 

83. Form Estimate the value of

by graphing. Then confirm your estimate with l’Hôpital’s Rule.

84. This exercise explores the difference between the limit

and the limit

lim
x: q

 a1 + 1
x b x

= e.

lim
x: q

 a1 + 1
x2 b x

lim
x:1

 
2x2 - s3x + 1d2x + 2

x - 1

0/0

 lim
x: q

 A2x2 + 1 - 2x B .sx + 2x2 + xd>sx + 2x2 + xd

ƒsxd = x - 2x2 + x

lim
x: q Ax - 2x2 + x B

ˆ  ! ˆ

 lim
x:0

 atan 2x
x3 + a

x2 + sin bx
x b = 0?

x = 0.

ƒsxd = • 9x - 3 sin 3x
5x3 , x Z 0

c, x = 0

ƒsxd = x3>3 - 4x, g sxd = x2, sa, bd = s0, 3d
ƒsxd = x, g sxd = x2, sa, bd arbitrary

ƒsxd = x, g sxd = x2, sa, bd = s -2, 0d

 = lim
x:0+

 
(1>x)

(-1>x2)
= lim

x:0+
 (-x) = 0

 lim
x:0+

 x ln x = lim
x:0+

 
ln x

(1>x)

lim
x:0+

 x ln x = lim
x:0+

 
ln x

(1>x)
= - q

q = -1

lim
x:0+

 x ln x = 0 # (- q ) = - q

lim
x:0+

 x ln x = 0 # (- q ) = 0

262 Chapter 4: Applications of Derivatives

a. Use l’Hôpital’s Rule to show that

b. Graph

together for How does the behavior of ƒ compare with
that of g? Estimate the value of .

c. Confirm your estimate of by calculating it with
l’Hôpital’s Rule.

85. Show that

86. Given that find the maximum value, if any, of

a.

b.

c. (n a positive integer)

d. Show that for every positive integer n.

87. Use limits to find horizontal asymptotes for each function.

a. b.

88. Find for 

89. The continuous extension of to

a. Graph on the interval . What value
would you assign to ƒ to make it continuous at ?

b. Verify your conclusion in part (a) by finding 
with l’Hôpital’s Rule.

c. Returning to the graph, estimate the maximum value of ƒ on
. About where is max ƒ taken on?

d. Sharpen your estimate in part (c) by graphing in the same
window to see where its graph crosses the x-axis. To simplify
your work, you might want to delete the exponential factor
from the expression for and graph just the factor that has a
zero.

90. The function (Continuation of Exercise 89.)

a. Graph on the interval . How
do you account for the gaps in the graph? How wide are the
gaps?

b. Now graph ƒ on the interval . The function is not
defined at , but the graph has no break at this point.
What is going on? What value does the graph appear to give
for ƒ at (Hint: Use l’Hôpital’s Rule to find lim ƒ as

and 

c. Continuing with the graphs in part (b), find max ƒ and min ƒ
as accurately as you can and estimate the values of x at which
they are taken on.

x : (p>2)+.)x : (p>2)-
x = p>2?

x = p>2 0 … x … p

-7 … x … 7ƒ(x) = (sin x)tan x

(sin x)tan x

ƒ¿

ƒ¿
[0, p]

limx:0+ ƒ(x)

x = 0
0 … x … pƒ(x) = (sin x)x

[0, p](sin x)x

ƒsxd = e e-1/x2
, x Z 0

0, x = 0.
ƒ¿s0d

y = 3x + e2x

2x + e3xy = x tan a1x b
limx:q x1>x n = 1

x1>xn

x1>x2

x1>x x 7 0,

lim
k: q

 a1 + r
k
b k

= er.

limx:q ƒ(x)

limx:q ƒ(x)
x Ú 0.

ƒ(x) = a1 + 1
x2 b x

 and g(x) = a1 + 1
x b x

lim
x: q

 a1 + 1
x b x

= e.

T

T

T

T

T
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268 Chapter 4: Applications of Derivatives

EXAMPLE 5 Suppose that and where x represents
millions of MP3 players produced. Is there a production level that maximizes profit? If so,
what is it?

Solution Notice that and 

Set

The two solutions of the quadratic equation are

The possible production levels for maximum profit are million MP3 players or
million. The second derivative of is 

since is everywhere zero. Thus, which is negative at 
and positive at By the Second Derivative Test, a maximum profit occurs at
about (where revenue exceeds costs) and maximum loss occurs at about

The graphs of r(x) and c(x) are shown in Figure 4.43.x = 0.586.
x = 3.414

x = 2 - 22.
x = 2 + 22p–(x) = 6(2 - x),r–sxd

p–sxd = -c–sxdp sxd = r sxd - c sxdx L 3.414
x L 0.586

x2 = 12 + 272
6 = 2 + 22 L 3.414.

 x1 = 12 - 272
6 = 2 - 22 L 0.586 and

 3x2 - 12x + 6 = 0

c¿sxd = r¿sxd . 3x2 - 12x + 15 = 9

c¿sxd = 3x2 - 12x + 15.r¿sxd = 9

c sxd = x3 - 6x2 + 15x ,r sxd = 9x

Exercises 4.6

Mathematical Applications
Whenever you are maximizing or minimizing a function of a single vari-
able, we urge you to graph it over the domain that is appropriate to the
problem you are solving. The graph will provide insight before you cal-
culate and will furnish a visual context for understanding your answer.

1. Minimizing perimeter What is the smallest perimeter possible
for a rectangle whose area is and what are its dimensions?

2. Show that among all rectangles with an 8-m perimeter, the one
with largest area is a square.

3. The figure shows a rectangle inscribed in an isosceles right trian-
gle whose hypotenuse is 2 units long.

a. Express the y-coordinate of P in terms of x. (Hint: Write an
equation for the line AB.)

b. Express the area of the rectangle in terms of x.

c. What is the largest area the rectangle can have, and what are
its dimensions?

x

y

0 1

B

A
x–1

P(x, ?)

16 in2 ,

4. A rectangle has its base on the x-axis and its upper two vertices on
the parabola What is the largest area the rectangle
can have, and what are its dimensions?

5. You are planning to make an open rectangular box from an 8-in.-
by-15-in. piece of cardboard by cutting congruent squares from
the corners and folding up the sides. What are the dimensions of
the box of largest volume you can make this way, and what is its
volume?

6. You are planning to close off a corner of the first quadrant with a
line segment 20 units long running from (a, 0) to (0, b). Show that
the area of the triangle enclosed by the segment is largest when

7. The best fencing plan A rectangular plot of farmland will be
bounded on one side by a river and on the other three sides by a
single-strand electric fence. With 800 m of wire at your dis-
posal, what is the largest area you can enclose, and what are its
dimensions?

8. The shortest fence A rectangular pea patch is to be en-
closed by a fence and divided into two equal parts by another
fence parallel to one of the sides. What dimensions for the outer
rectangle will require the smallest total length of fence? How
much fence will be needed?

9. Designing a tank Your iron works has contracted to design and
build a square-based, open-top, rectangular steel holding
tank for a paper company. The tank is to be made by welding thin
stainless steel plates together along their edges. As the production
engineer, your job is to find dimensions for the base and height
that will make the tank weigh as little as possible.

500 ft3 ,

216 m2

a = b .

y = 12 - x2 .

x

y

0 2

Maximum
for profit

Local maximum for loss

c(x) ! x3 " 6x2 # 15x

NOT TO SCALE

r(x) ! 9x

2 " !2 2 # !2

FIGURE 4.43 The cost and revenue
curves for Example 5.
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4.6 Applied Optimization 269

a. What dimensions do you tell the shop to use?

b. Briefly describe how you took weight into account.

10. Catching rainwater A open-top rectangular tank
with a square base x ft on a side and y ft deep is to be built with
its top flush with the ground to catch runoff water. The costs 
associated with the tank involve not only the material from
which the tank is made but also an excavation charge propor-
tional to the product xy.

a. If the total cost is

what values of x and y will minimize it?

b. Give a possible scenario for the cost function in part (a).

11. Designing a poster You are designing a rectangular poster to
contain of printing with a 4-in. margin at the top and bot-
tom and a 2-in. margin at each side. What overall dimensions will
minimize the amount of paper used?

12. Find the volume of the largest right circular cone that can be in-
scribed in a sphere of radius 3.

13. Two sides of a triangle have lengths a and b, and the angle be-
tween them is What value of will maximize the triangle’s
area? (Hint: )

14. Designing a can What are the dimensions of the lightest
open-top right circular cylindrical can that will hold a volume
of Compare the result here with the result in
Example 2.

15. Designing a can You are designing a right circular
cylindrical can whose manufacture will take waste into account.
There is no waste in cutting the aluminum for the side, but the top
and bottom of radius r will be cut from squares that measure 2r
units on a side. The total amount of aluminum used up by the can
will therefore be

rather than the in Example 2. In Example 2,
the ratio of h to r for the most economical can was 2 to 1. What is
the ratio now?

16. Designing a box with a lid A piece of cardboard measures 10
in. by 15 in. Two equal squares are removed from the corners of a
10-in. side as shown in the figure. Two equal rectangles are re-
moved from the other corners so that the tabs can be folded to
form a rectangular box with lid.

A = 2pr2 + 2prh

A = 8r2 + 2prh

1000 cm3

1000 cm3 ?

A = s1>2dab sin u .
uu .

y

x

3

3

50 in2

c = 5sx2 + 4xyd + 10xy,

1125 ft3

a. Write a formula V(x) for the volume of the box.

b. Find the domain of V for the problem situation and graph V
over this domain.

c. Use a graphical method to find the maximum volume and the
value of x that gives it.

d. Confirm your result in part (c) analytically.

17. Designing a suitcase A 24-in.-by-36-in. sheet of cardboard is
folded in half to form a 24-in.-by-18-in. rectangle as shown in the
accompanying figure. Then four congruent squares of side length
x are cut from the corners of the folded rectangle. The sheet is
unfolded, and the six tabs are folded up to form a box with sides
and a lid.

a. Write a formula V(x) for the volume of the box.

b. Find the domain of V for the problem situation and graph V
over this domain.

c. Use a graphical method to find the maximum volume and the
value of x that gives it.

d. Confirm your result in part (c) analytically.

e. Find a value of x that yields a volume of 

f. Write a paragraph describing the issues that arise in part (b).

18. A rectangle is to be inscribed under the arch of the curve
from to What are the dimen-

sions of the rectangle with largest area, and what is the largest
area?

x = p .x = -py = 4 cos s0.5xd

24"

36"

x

24"

x

x x

x x

x x

18"

24"

36"

Base

The sheet is then unfolded.

1120 in3 .

10"

xx

x

x x

x

15"

Base Lid

x x

N
O

T
  T

O
  S

C
A

L
E

T

T
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19. Find the dimensions of a right circular cylinder of maximum vol-
ume that can be inscribed in a sphere of radius 10 cm. What is the
maximum volume?

20. a. The U.S. Postal Service will accept a box for domestic ship-
ment only if the sum of its length and girth (distance around)
does not exceed 108 in. What dimensions will give a box with
a square end the largest possible volume?

b. Graph the volume of a 108-in. box (length plus girth equals
108 in.) as a function of its length and compare what you see
with your answer in part (a).

21. (Continuation of Exercise 20.)

a. Suppose that instead of having a box with square ends you
have a box with square sides so that its dimensions are h by h
by w and the girth is What dimensions will give the
box its largest volume now?

b. Graph the volume as a function of h and compare what you
see with your answer in part (a).

22. A window is in the form of a rectangle surmounted by a semicircle.
The rectangle is of clear glass, whereas the semicircle is of tinted
glass that transmits only half as much light per unit area as clear glass
does. The total perimeter is fixed. Find the proportions of the window
that will admit the most light. Neglect the thickness of the frame.

23. A silo (base not included) is to be constructed in the form of a cylin-
der surmounted by a hemisphere. The cost of construction per square
unit of surface area is twice as great for the hemisphere as it is for the

w

Girth

h

h

2h + 2w .

Square end

Girth ! distance
around here

Length

270 Chapter 4: Applications of Derivatives

cylindrical sidewall. Determine the dimensions to be used if the vol-
ume is fixed and the cost of construction is to be kept to a minimum.
Neglect the thickness of the silo and waste in construction.

24. The trough in the figure is to be made to the dimensions shown.
Only the angle can be varied. What value of will maximize the
trough’s volume?

25. Paper folding A rectangular sheet of 8.5-in.-by-11-in. paper is
placed on a flat surface. One of the corners is placed on the oppo-
site longer edge, as shown in the figure, and held there as the pa-
per is smoothed flat. The problem is to make the length of the
crease as small as possible. Call the length L. Try it with paper.

a. Show that 

b. What value of x minimizes 

c. What is the minimum value of L?

26. Constructing cylinders Compare the answers to the following
two construction problems.

a. A rectangular sheet of perimeter 36 cm and dimensions
x cm by y cm is to be rolled into a cylinder as shown in
part (a) of the figure. What values of x and y give the
largest volume?

b. The same sheet is to be revolved about one of the sides of
length y to sweep out the cylinder as shown in part (b) of
the figure. What values of x and y give the largest volume?

x

y

y

(a)

Circumference 5 x
y

x

(b)

Crease

D C

BPA
x

x

L

R

Q (originally at A)
!L2 ! x2

L2 ?

L2 = 2x3>s2x - 8.5d .

!!

20'

1'

1'

1'

uu

T

T

7001_AWLThomas_ch04p222-296.qxd  10/12/09  2:28 PM  Page 270
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27. Constructing cones A right triangle whose hypotenuse is
long is revolved about one of its legs to generate a right

circular cone. Find the radius, height, and volume of the cone of
greatest volume that can be made this way.

28. Find the point on the line that is closest to the origin. 

29. Find a positive number for which the sum of it and its reciprocal
is the smallest (least) possible. 

30. Find a postitive number for which the sum of its reciprocal and
four times its square is the smallest possible. 

31. A wire b m long is cut into two pieces. One piece is bent into an
equilateral triangle and the other is bent into a circle. If the sum of
the areas enclosed by each part is a minimum, what is the length
of each part? 

32. Answer Exercise 31 if one piece is bent into a square and the
other into a circle. 

33. Determine the dimensions of the rectangle of
largest area that can be inscribed in the right
triangle shown in the accompanying figure. 

34. Determine the dimensions of the 
rectangle of largest area that can be
inscribed in a semicircle of radius 3.
(See accompanying figure.) 

35. What value of a makes have

a. a local minimum at 

b. a point of inflection at 

36. What values of a and b make have

a. a local maximum at and a local minimum at 

b. a local minimum at and a point of inflection at 

Physical Applications
37. Vertical motion The height above ground of an object moving

vertically is given by

with s in feet and t in seconds. Find

a. the object’s velocity when ;

b. its maximum height and when it occurs;

c. its velocity when 

38. Quickest route Jane is 2 mi offshore in a boat and wishes to
reach a coastal village 6 mi down a straight shoreline from the
point nearest the boat. She can row 2 mph and can walk 5 mph.
Where should she land her boat to reach the village in the least
amount of time?

s = 0.

t = 0

s = -16t2 + 96t + 112,

x = 1?x = 4

x = 3?x = -1

ƒsxd = x3 + ax2 + bx

x = 1?

x = 2?

ƒsxd = x2 + sa>xd

x
a +

y
b

= 1

h

r

!3

23 m
39. Shortest beam The 8-ft wall shown here stands 27 ft from the

building. Find the length of the shortest straight beam that will
reach to the side of the building from the ground outside the wall.

40. Motion on a line The positions of two particles on the s-axis
are with and in meters
and t in seconds.

a. At what time(s) in the interval do the particles
meet?

b. What is the farthest apart that the particles ever get?

c. When in the interval is the distance between the
particles changing the fastest?

41. The intensity of illumination at any point from a light source is
proportional to the square of the reciprocal of the distance be-
tween the point and the light source. Two lights, one having an in-
tensity eight times that of the other, are 6 m apart. How far from
the stronger light is the total illumination least?

42. Projectile motion The range R of a projectile fired from the
origin over horizontal ground is the distance from the origin to the
point of impact. If the projectile is fired with an initial velocity 
at an angle with the horizontal, then in Chapter 13 we find that

where g is the downward acceleration due to gravity. Find the an-
gle for which the range R is the largest possible.

43. Strength of a beam The strength S of a rectangular wooden
beam is proportional to its width times the square of its depth.
(See the accompanying figure.)

a. Find the dimensions of the strongest beam that can be cut
from a 12-in.-diameter cylindrical log.

b. Graph S as a function of the beam’s width w, assuming the
proportionality constant to be Reconcile what you see
with your answer in part (a).

c. On the same screen, graph S as a function of the beam’s depth
d, again taking Compare the graphs with one another
and with your answer in part (a). What would be the effect of
changing to some other value of k? Try it.

12"
d

w

k = 1.

k = 1.

a

R =
y0

2

g  sin 2a,

a
y0

0 … t … 2p

0 … t … 2p

s2s1s1 = sin t and s2 = sin st + p>3d ,

Building

27'

Beam

8' wall

T

4

3

5
w

h

r 5 3

w

h
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44. Stiffness of a beam The stiffness S of a rectangular beam is
proportional to its width times the cube of its depth.

a. Find the dimensions of the stiffest beam that can be cut from
a 12-in.-diameter cylindrical log.

b. Graph S as a function of the beam’s width w, assuming the
proportionality constant to be Reconcile what you see
with your answer in part (a).

c. On the same screen, graph S as a function of the beam’s depth
d, again taking Compare the graphs with one another
and with your answer in part (a). What would be the effect of
changing to some other value of k? Try it.

45. Frictionless cart A small frictionless cart, attached to the wall
by a spring, is pulled 10 cm from its rest position and released at
time to roll back and forth for 4 sec. Its position at time t is

a. What is the cart’s maximum speed? When is the cart moving
that fast? Where is it then? What is the magnitude of the 
acceleration then?

b. Where is the cart when the magnitude of the acceleration is
greatest? What is the cart’s speed then?

46. Two masses hanging side by side from springs have positions
respectively.

a. At what times in the interval do the masses pass each
other? (Hint: )

b. When in the interval is the vertical distance be-
tween the masses the greatest? What is this distance? (Hint:

)

47. Distance between two ships At noon, ship A was 12 nautical
miles due north of ship B. Ship A was sailing south at 12 knots
(nautical miles per hour; a nautical mile is 2000 yd) and contin-
ued to do so all day. Ship B was sailing east at 8 knots and contin-
ued to do so all day.

a. Start counting time with at noon and express the
distance s between the ships as a function of t.

b. How rapidly was the distance between the ships changing at
noon? One hour later?

t = 0

s

0

m2

s1

s2

m1

cos 2t = 2 cos2 t - 1.

0 … t … 2p

sin 2t = 2 sin t cos t .
0 6 t

s1 = 2 sin t and s2 = sin 2t ,

0 10
s

s = 10 cos pt .
t = 0

k = 1.

k = 1.
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c. The visibility that day was 5 nautical miles. Did the ships ever
sight each other?

d. Graph s and together as functions of 
using different colors if possible. Compare the graphs and
reconcile what you see with your answers in parts (b) and (c).

e. The graph of looks as if it might have a horizontal
asymptote in the first quadrant. This in turn suggests that

approaches a limiting value as What is this
value? What is its relation to the ships’ individual speeds?

48. Fermat’s principle in optics Light from a source A is reflected
by a plane mirror to a receiver at point B, as shown in the accom-
panying figure. Show that for the light to obey Fermat’s principle,
the angle of incidence must equal the angle of reflection, both
measured from the line normal to the reflecting surface. (This re-
sult can also be derived without calculus. There is a purely geo-
metric argument, which you may prefer.)

49. Tin pest When metallic tin is kept below 13.2°C, it slowly be-
comes brittle and crumbles to a gray powder. Tin objects eventu-
ally crumble to this gray powder spontaneously if kept in a cold
climate for years. The Europeans who saw tin organ pipes in their
churches crumble away years ago called the change tin pest be-
cause it seemed to be contagious, and indeed it was, for the gray
powder is a catalyst for its own formation.

A catalyst for a chemical reaction is a substance that controls
the rate of reaction without undergoing any permanent change in
itself. An autocatalytic reaction is one whose product is a catalyst
for its own formation. Such a reaction may proceed slowly at first
if the amount of catalyst present is small and slowly again at the
end, when most of the original substance is used up. But in be-
tween, when both the substance and its catalyst product are abun-
dant, the reaction proceeds at a faster pace.

In some cases, it is reasonable to assume that the rate
of the reaction is proportional both to the amount of

the original substance present and to the amount of product. That
is, may be considered to be a function of x alone, and

where

At what value of x does the rate have a maximum? What is the
maximum value of ?

50. Airplane landing path An airplane is flying at altitude H when it
begins its descent to an airport runway that is at horizontal ground
distance L from the airplane, as shown in the figure. Assume that the

y
y

 k = a positive constant .

 a = the amount of substance at the beginning

 x = the amount of product

y = kxsa - xd = kax - kx2,

y

y = dx>dt

B

Plane mirror

Light
source

Angle of
incidence

Light
receiver

Normal

Angle of
reflection

A
!1

!2

t : q .ds>dt

ds>dt

t for -1 … t … 3,ds>dt

T

T
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4.6 Applied Optimization 273

landing path of the airplane is the graph of a cubic polyno-
mial function and

a. What is 

b. What is 

c. Use the values for and together with
to show that

Business and Economics
51. It costs you c dollars each to manufacture and distribute backpacks.

If the backpacks sell at x dollars each, the number sold is given by

where a and b are positive constants. What selling price will bring
a maximum profit?

52. You operate a tour service that offers the following rates:

$200 per person if 50 people (the minimum number to book the
tour) go on the tour.

For each additional person, up to a maximum of 80 people 
total, the rate per person is reduced by $2.

It costs $6000 (a fixed cost) plus $32 per person to conduct the
tour. How many people does it take to maximize your profit?

53. Wilson lot size formula One of the formulas for inventory
management says that the average weekly cost of ordering, paying
for, and holding merchandise is

where q is the quantity you order when things run low (shoes, 
radios, brooms, or whatever the item might be), k is the cost of
placing an order (the same, no matter how often you order), c is
the cost of one item (a constant), m is the number of items sold
each week (a constant), and h is the weekly holding cost per item
(a constant that takes into account things such as space, utilities,
insurance, and security).

a. Your job, as the inventory manager for your store, is to find
the quantity that will minimize A(q). What is it? (The formula
you get for the answer is called the Wilson lot size formula.)

b. Shipping costs sometimes depend on order size. When they
do, it is more realistic to replace the sum of k
and a constant multiple of q. What is the most economical
quantity to order now?

k by k + bq ,

Asqd = km
q + cm +

hq
2

,

n = a
x - c + bs100 - xd ,

Landing path y

x

H = Cruising altitude
Airport

L

y sxd = H c2 ax
L b3

+ 3 ax
L b2 d .

y s0d = 0 and y s -Ld = H
x = -Ldy>dx at x = 0

dy>dx at x = -L?

dy>dx at x = 0?

y s0d = 0.
y = ax3 + bx2 + cx + d,  where y s -Ld = H

54. Production level Prove that the production level (if any) at
which average cost is smallest is a level at which the average cost
equals marginal cost.

55. Show that if are your rev-
enue and cost functions, then the best you can do is break even
(have revenue equal cost).

56. Production level Suppose that is
the cost of manufacturing x items. Find a production level that
will minimize the average cost of making x items.

57. You are to construct an open rectangular box with a square base
and a volume of 48 If material for the bottom costs and
material for the sides costs what dimensions will result in
the least expensive box? What is the minimum cost?

58. The 800-room Mega Motel chain is filled to capacity when the
room charge is $50 per night. For each $10 increase in room
charge, 40 fewer rooms are filled each night. What charge per
room will result in the maximum revenue per night?

Biology
59. Sensitivity to medicine (Continuation of Exercise 72, Section

3.3.) Find the amount of medicine to which the body is most sen-
sitive by finding the value of M that maximizes the derivative

, where

and C is a constant.

60. How we cough

a. When we cough, the trachea (windpipe) contracts to
increase the velocity of the air going out. This raises the
questions of how much it should contract to maximize the
velocity and whether it really contracts that much when
we cough.

Under reasonable assumptions about the elasticity of the
tracheal wall and about how the air near the wall is slowed by
friction, the average flow velocity can be modeled by the
equation

where is the rest radius of the trachea in centimeters and
c is a positive constant whose value depends in part on the
length of the trachea.

Show that is greatest when that is, when
the trachea is about 33% contracted. The remarkable fact is
that X-ray photographs confirm that the trachea contracts
about this much during a cough.

b. Take to be 0.5 and c to be 1 and graph over the interval
Compare what you see with the claim that is

at a maximum when 

Theory and Examples
61. An inequality for positive integers Show that if a, b, c, and d

are positive integers, then

sa2 + 1dsb2 + 1dsc2 + 1dsd2 + 1d
abcd

Ú 16.

r = s2>3dr0 .
y0 … r … 0.5 .

yr0

r = s2>3dr0;y

r0

y = csr0 - rdr2 cm>sec, r0

2
… r … r0 ,

y

R = M2 aC
2

- M
3
b

dR>dM

$4>ft2, $6>ft2ft3.

csxd = x3 - 20x2 + 20,000x

rsxd = 6x and csxd = x3 - 6x2 + 15x

T
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274 Chapter 4: Applications of Derivatives

62. The derivative in Example 4

a. Show that

is an increasing function of x.

b. Show that

is a decreasing function of x.

c. Show that

is an increasing function of x.

63. Let ƒ(x) and g(x) be the differentiable functions graphed here.
Point c is the point where the vertical distance between the curves
is the greatest. Is there anything special about the tangents to the
two curves at c? Give reasons for your answer.

64. You have been asked to determine whether the function 
is ever negative.3 + 4 cos x + cos 2x

ƒsxd =

x
a c b

y ! f (x)

y ! g(x)

dt
dx

= x

c12a2 + x2
- d - x

c22b2 + sd - xd2

g sxd = d - x2b2 + sd - xd2

ƒsxd = x2a2 + x2

dt>dx a. Explain why you need to consider values of x only in the in-
terval 

b. Is ƒ ever negative? Explain.

65. a. The function has an absolute maxi-
mum value on the interval Find it.

b. Graph the function and compare what you see with your an-
swer in part (a).

66. a. The function has an absolute minimum
value on the interval Find it.

b. Graph the function and compare what you see with your
answer in part (a).

67. a. How close does the curve come to the point ( , 0)?
(Hint: If you minimize the square of the distance, you can
avoid square roots.)

b. Graph the distance function and together and
reconcile what you see with your answer in part (a).

68. a. How close does the semicircle come to the
point 

b. Graph the distance function and together and
reconcile what you see with your answer in part (a).

y = 216 - x2

A1, 23 B ? y = 216 - x2

(x, !x)

0 3
2, 0

y

x

y ! !x

⎛
⎝

⎛
⎝

y = 2xD(x)

3>2y = 2x

0 6 x 6 p>2.
y = tan x + 3 cot x

0 6 x 6 p .
y = cot x - 22 csc x

[0, 2p] .

4.7 Newton’s Method

In this section we study a numerical method, called Newton’s method or the
Newton–Raphson method, which is a technique to approximate the solution to an equation

Essentially it uses tangent lines in place of the graph of near the
points where ƒ is zero. (A value of x where ƒ is zero is a root of the function ƒ and a
solution of the equation )

Procedure for Newton’s Method

The goal of Newton’s method for estimating a solution of an equation is to pro-
duce a sequence of approximations that approach the solution. We pick the first number 
of the sequence. Then, under favorable circumstances, the method does the rest by moving
step by step toward a point where the graph of ƒ crosses the x-axis (Figure 4.44). At each
step the method approximates a zero of ƒ with a zero of one of its linearizations. Here is
how it works.

The initial estimate, may be found by graphing or just plain guessing. The method
then uses the tangent to the curve at to approximate the curve, callingsx0, ƒsx0ddy = ƒsxd

x0 ,

x0

ƒsxd = 0

ƒsxd = 0.

y = ƒsxdƒsxd = 0.

T

T

T

T
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4.7 Newton’s Method 277

Convergence of the Approximations

In Chapter 10 we define precisely the idea of convergence for the approximations in
Newton’s method. Intuitively, we mean that as the number n of approximations increases
without bound, the values get arbitrarily close to the desired root r. (This notion is similar to
the idea of the limit of a function g(t) as t approaches infinity, as defined in Section 2.6.)

In practice, Newton’s method usually gives convergence with impressive speed, but
this is not guaranteed. One way to test convergence is to begin by graphing the function to
estimate a good starting value for You can test that you are getting closer to a zero of
the function by evaluating , and check that the approximations are converging by
evaluating 

Newton’s method does not always converge. For instance, if

the graph will be like the one in Figure 4.49. If we begin with we get
and successive approximations go back and forth between these two values.

No amount of iteration brings us closer to the root than our first guess.
If Newton’s method does converge, it converges to a root. Be careful, however. There

are situations in which the method appears to converge but there is no root there. Fortu-
nately, such situations are rare.

When Newton’s method converges to a root, it may not be the root you have in mind.
Figure 4.50 shows two ways this can happen.

x1 = r + h ,
x0 = r - h ,

ƒsxd = e -2r - x, x 6 r2x - r, x Ú r,

ƒ xn - xn + 1 ƒ .
ƒ ƒsxnd ƒ

x0 .

xn

xn

x

y

0
r

y ! f (x)

x1x0

FIGURE 4.49 Newton’s method fails to
converge. You go from to and back to

never getting any closer to r.x0 ,
x1x0

x2

Root found

x1

Starting
point

Root
sought

x
x0

Root sought
x0

Starting
point

Root
found

x
x1

y ! f (x)

y ! f (x)

FIGURE 4.50 If you start too far away, Newton’s method may miss the root you want.

Exercises 4.7

Root Finding
1. Use Newton’s method to estimate the solutions of the equation

Start with for the left-hand solution
and with for the solution on the right. Then, in each case,
find 

2. Use Newton’s method to estimate the one real solution of
Start with and then find 

3. Use Newton’s method to estimate the two zeros of the function
Start with for the left-hand zero

and with for the zero on the right. Then, in each case,
find 

4. Use Newton’s method to estimate the two zeros of the function
Start with for the left-hand zero and

with for the zero on the right. Then, in each case, find 

5. Use Newton’s method to find the positive fourth root of 2 by solv-
ing the equation Start with and find x2 .x0 = 1x4 - 2 = 0.

x2 .x0 = 2
x0 = 0ƒsxd = 2x - x2 + 1.

x2 .
x0 = 1

x0 = -1ƒsxd = x4 + x - 3.

x2 .x0 = 0x3 + 3x + 1 = 0.

x2 .
x0 = 1

x0 = -1x2 + x - 1 = 0.

6. Use Newton’s method to find the negative fourth root of 2 by solv-
ing the equation Start with and find 

7. Guessing a root Suppose that your first guess is lucky, in the
sense that is a root of Assuming that is de-
fined and not 0, what happens to and later approximations?

8. Estimating pi You plan to estimate to five decimal places
by using Newton’s method to solve the equation Does
it matter what your starting value is? Give reasons for your answer.

Theory and Examples
9. Oscillation Show that if applying Newton’s method to

leads to and to Draw a
picture that shows what is going on.

x1 = h if x0 = -h .x1 = -h if x0 = h

ƒsxd = • 2x, x Ú 02-x, x 6 0

h 7 0,

cos x = 0.
p>2x1

ƒ¿sx0dƒsxd = 0.x0

x2 .x0 = -1x4 - 2 = 0.
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278 Chapter 4: Applications of Derivatives

10. Approximations that get worse and worse Apply Newton’s
method to and calculate 
Find a formula for What happens to Draw a
picture that shows what is going on.

11. Explain why the following four statements ask for the same infor-
mation:

iii) Find the roots of 

iii) Find the x-coordinates of the intersections of the curve
with the line 

iii) Find the x-coordinates of the points where the curve
crosses the horizontal line 

iv) Find the values of x where the derivative of 
equals zero.

12. Locating a planet To calculate a planet’s space coordinates, we
have to solve equations like Graphing the
function suggests that the function has
a root near Use one application of Newton’s method to
improve this estimate. That is, start with and find 
(The value of the root is 1.49870 to five decimal places.) Remem-
ber to use radians.

13. Intersecting curves The curve crosses the line
between and Use Newton’s method to

find where.

14. Real solutions of a quartic Use Newton’s method to find the
two real solutions of the equation 

15. a. How many solutions does the equation 
have?

b. Use Newton’s method to find them.

16. Intersection of curves

a. Does cos 3x ever equal x? Give reasons for your answer.

b. Use Newton’s method to find where.

17. Find the four real zeros of the function 

18. Estimating pi Estimate to as many decimal places as your
calculator will display by using Newton’s method to solve the
equation 

19. Intersection of curves At what value(s) of x does 

20. Intersection of curves At what value(s) of x does 

21. The graphs of and intersect at
one point Use Newton’s method to estimate the value of r
to four decimal places. 

22. The graphs of and intersect at one point
Use Newton’s method to estimate the value of r to four

decimal places. 
x = r.

y = 3 - x2y = 2x

1

21–1 0

3

2

x

y

y 5 x
1

y 5 x2(x 1 1)

rr, 1⎛
⎝

⎛
⎝

x = r.
(x 7 0)y = 1>xy = x2(x + 1)

cos x = -x?

cos x = 2x?

tan x = 0 with x0 = 3.

p

ƒsxd = 2x4 - 4x2 + 1.

sin 3x = 0.99 - x2

x4 - 2x3 - x2 - 2x + 2 = 0.

x = p>2.x = 0y = 2x
y = tan x

x1 .x0 = 1.5
x = 1.5 .

ƒsxd = x - 1 - 0.5 sin x
x = 1 + 0.5 sin x .

s1>4dx4 - s3>2dx2 - x + 5
g sxd =

y = 1.y = x3 - 3x

y = 3x + 1.y = x3

ƒsxd = x3 - 3x - 1.

ƒ xn ƒ  as n : q ?ƒ xn ƒ .
x1 , x2 , x3 , and x4 .ƒsxd = x1>3 with x0 = 1

23. Intersection of curves At what value(s) of x does
?

24. Intersection of curves At what value(s) of x does

25. Use the Intermediate Value Theorem from Section 2.5 to show
that has a root between and 
Then find the root to five decimal places.

26. Factoring a quartic Find the approximate values of through 
in the factorization

27. Converging to different zeros Use Newton’s method to find
the zeros of using the given starting values.

a. and lying in 

b. and lying in 

c. and lying in 

d. and 

28. The sonobuoy problem In submarine location problems, it is
often necessary to find a submarine’s closest point of approach
(CPA) to a sonobuoy (sound detector) in the water. Suppose that
the submarine travels on the parabolic path and that the
buoy is located at the point 

a. Show that the value of x that minimizes the distance between
the submarine and the buoy is a solution of the equation

b. Solve the equation with Newton’s method.

29. Curves that are nearly flat at the root Some curves are so flat
that, in practice, Newton’s method stops too far from the root to
give a useful estimate. Try Newton’s method on 
with a starting value of to see how close your machine
comes to the root See the accompanying graph.x = 1.

x0 = 2
ƒsxd = sx - 1d40

x

y

0

2, –

1

1 2

Sonobuoy

CPA

Submarine track
in two dimensions

1
2

⎛
⎝

⎛
⎝

y ! x2

x = 1>sx2 + 1d
x = 1>sx2 + 1d .

s2, -1>2d .
y = x2

x0 = 221>7x0 = -221>7 A22>2, q Bx0 = 2,x0 = 0.8

A -221>7, 221>7 Bx0 = 0.25 ,x0 = -0.5

A - q , -22>2 Bx0 = -0.8 ,x0 = -2

ƒsxd = 4x4 - 4x2

x

y

2

1–1 2

–4

–6

–2

–8

–10

–12

y ! 8x4 " 14x3 " 9x2 # 11x " 1

8x4 - 14x3 - 9x2 + 11x - 1 = 8sx - r1dsx - r2dsx - r3dsx - r4d.

r4r1

x = 2.x = 1ƒsxd = x3 + 2x - 4

ln (1 - x2) = x - 1?

e-x2 = x2 - x + 1

T

T

T

T

T

T
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x

y

0

(2, 1)

1

1

2

Nearly flat

Slope ! 40Slope ! –40

y ! (x " 1)40

30. The accompanying figure shows a circle of radius r with a chord
of length 2 and an arc s of length 3. Use Newton’s method to solve
for r and (radians) to four decimal places. Assume 

u 2

r

r

s 5 3

0 6 u 6 p.u

4.8 Antiderivatives

We have studied how to find the derivative of a function. However, many problems require
that we recover a function from its known derivative (from its known rate of change). For in-
stance, we may know the velocity function of an object falling from an initial height and
need to know its height at any time. More generally, we want to find a function F from its
derivative ƒ. If such a function F exists, it is called an antiderivative of ƒ. We will see in the
next chapter that antiderivatives are the link connecting the two major elements of calculus:
derivatives and definite integrals.

Finding Antiderivatives

DEFINITION A function F is an antiderivative of ƒ on an interval I if
for all x in I.F¿sxd = ƒsxd

The process of recovering a function F(x) from its derivative ƒ(x) is called
antidifferentiation. We use capital letters such as F to represent an antiderivative of a func-
tion ƒ, G to represent an antiderivative of g, and so forth.

EXAMPLE 1 Find an antiderivative for each of the following functions.

(a) (b) (c)

Solution We need to think backward here: What function do we know has a derivative
equal to the given function?

(a) (b) (c)

Each answer can be checked by differentiating. The derivative of is 2x. 
The derivative of is and the derivative of is 
(1>x) + 2e2x.

H(x) = ln ƒ x ƒ + e2xcos xGsxd = sin x
Fsxd = x2

H(x) = ln ƒ x ƒ + e2xGsxd = sin xFsxd = x2

h(x) = 1
x + 2e2xg sxd = cos xƒsxd = 2x
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